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Abstract

Software transactional memory (STM) simplifies the challenging, yet increasingly

critical task of parallel programming. Using STM allows programmers to reason

about concurrent operations in terms of transactions—groups of operations

guaranteed to have atomic effect. Our STM system, STO (Software Transactional

Objects), outperforms previous STM systems, but its performance still falls short of

that of the fastest concurrent programming techniques. This work aims to make

STO as fast as these techniques, and, when this appears impossible, to characterize

precisely why. We implement and benchmark the most performant concurrent

programming algorithms for abstract datatypes within STO’s transactional

framework. Our results indicate that certain concurrent datatype algorithms lose

their scalability and performance in a transactional setting, while other algorithms

successfully support transactions without incurring a crippling performance loss. We

claim that this discrepancy arises because various concurrent algorithms have

different levels of dependency on operation commutativity, and suffer different

amounts of commutativity loss in a transactional setting. To support this claim, we

pose an alternative operation interface that allows for greater operation

commutativity, and, with this interface, re-implement a concurrent datatype whose

performance is crippled in a transactional setting. This concurrent datatype is then

able to retain its performance and scalability in a transactional setting. We conclude

that examining both a datatype’s dependency on operation commutativity, and the

loss of commutativity of a particular datatype interface in a transactional setting, is

enough to determine whether a concurrent, non-transactional data structure will

achieve high scalability and performance when integrated with STO.
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1
Introduction

1.1 STM and STO

Parallelism is increasingly critical for performance in computer software systems,

but parallel programming remains enormously challenging to get right. Low-level

mechanisms for coordinating threads, such as lock-based strategies, are fragile and

error-prone. To address this problem, researchers have developed programming tools

and methodologies for managing parallelism. Prominent among these is software

transactional memory (STM), which allows programmers to write concurrent code
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using sequential programming paradigms. By using STM, programmers reason

about concurrent operations on shared memory through transactions—atomic

groups of operations—instead of single operations.

Unfortunately, STM often results in high overhead and is rarely considered

practical. To provide transactional guarantees, an STM system tracks the different

memory words accessed within a transaction, and ensures that these words are not

touched by concurrently executing transactions. Traditional word-based STM tracks

all words of memory read or written in a transaction, incurring enormous

overhead [5]. To address this problem, a research team at Harvard has produced a

novel type of STM, STO (Software Transactional Objects), that greatly improves

upon the performance of traditional STM [23]. The system’s implementation works

at a higher level than most previously developed systems: data structure operations,

rather than individual memory words. For example, a word-STM tracks every word

accessed in the path from the root during a binary search tree lookup, which

introduces significant overhead from transactional bookkeeping and unnecessary

conflicts: the transaction will abort if there is a concurrent update to the path, even

though the result of the lookup may be unaffected. STO allows datatypes to track

datatype-specific abstract objects instead of memory words. Thus, during a binary

search tree lookup, STO will track only the abstract object corresponding to the

parent of the searched-for node, and use only this object to detect a conflict in

which the node is modified, removed, or inserted. Compared to a word-STM, STO

reduces the number of false conflicts and tracks hundreds of times fewer objects.
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1.2 Motivation

The focus of this work is to make STO as fast as the fastest non-transactional,

concurrent programming patterns available, and, when this is impossible, to

characterize precisely why. Although STO outperforms traditional STM, STO’s

performance still falls far below that of other concurrent programming paradigms,

such as flat combining [17]. STO’s library of transactional datatypes—datatypes

exposing transactional operations—allows programmers to add transactional

memory to their programs. Thus, STO programs are only as fast as STO datatypes.

Transactional data structure algorithms are therefore a natural focus for our

research: by defining the limits and potentials of these algorithms, we learn how to

maximize the performance of the STO system.

1.3 Overview

While the scope of our research includes all the different datatypes supported by

STO, this thesis focuses on a few core data structures: queues and hashmaps. We

began our research by implementing the initial version of these STO datatypes and,

more broadly, developing design techniques for transactional data structures. These

techniques define general patterns for designing transactional algorithms, such as

how to handle reads and writes of the same object within the same transaction.

These patterns, however, do not maximize scalability or performance.

To discover how to maximize performance, we analyze and compare the

performance of existing STO data structures against implementations of

highly-concurrent data structure algorithms from recent research. These concurrent

data structure algorithms strive to maximize scalability and performance in a
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non-transactional setting: they ensure that single operations can execute

concurrently in multiple threads, but provide no guarantees that a thread can

execute a sequence of operations (a transaction) without interruption from another

thread (atomically). Transactional systems have strictly more work to do than these

non-transactional concurrent systems: both systems must ensure correct

synchronization of single operations, but a transactional system must also correctly

synchronize multiple operations within a transaction such that they have atomic

effect. Thus, the performance of the fastest concurrent datatypes available acts as

an upper bound for the performance that transactional STO data structures may

reasonably hope to achieve. Our benchmarks highlight which concurrent,

non-transactional data structures are the highest-performing, and which parts of the

transactional data structure algorithms are bottlenecks and areas for improvement.

We first hypothesize that combining concurrent, non-transactional

programming patterns with our transactional design patterns will produce

transactional datatypes that greatly outperform our previous implementations. To

evaluate this hypothesis, we take the fastest concurrent datatype algorithms and

implement them within the STO framework. We discover that the algorithmic

changes necessary to move certain highly-concurrent data structures into STO

results in a significant decrease in their performance; at times, they even

underperform our initial STO data structures that use naive algorithms for

concurrency. Furthermore, our experience combining highly-concurrent,

non-transactional algorithms with transactional algorithms leads us to conclude

that reasoning about scalability in transactional datatypes is inherently different

than reasoning about scalability in non-transactional, concurrent datatypes. In

particular, to handle transactions, one must reason about invariants regarding the

datatype’s state during the entirety of the transaction’s execution. We formalize this

4



argument as a commutativity argument, drawing on previous work regarding

commutativity in concurrent interfaces [6] and transactional objects [35, 40].

The stateful nature of transactions, and therefore the reduced operation

commutativity in a transactional setting, leads us to revise our hypothesis. We

claim that certain highly-concurrent datatype algorithms may be intrinsically

non-transactional, because the optimizations taken by these algorithms to achieve

their high performance are incompatible with providing transactional guarantees. In

other words, if the synchronization technique of a concurrent data structure relies

on operation commutativity invalidated by transactional guarantees, then the data

structure is unlikely to perform well in a transactional setting. If, however, there are

few or no added commutativity constraints in a transactional setting, then the

added synchronization costs to support transactions do not cripple the concurrent

algorithm.

To evaluate our claim, we take highly-concurrent data structures that

underperform when integrated with STO, and investigate how these data structures

act when we modify their specifications—their operation interfaces—to allow for

greater commutativity in a transactional setting. With an alternative specification,

we achieve a better separation between the logic needed for transactional support,

and the logic of the concurrent synchronization algorithm: this allows us to adapt

concurrent data structures for transactional settings while retaining their high

performance. Comparing data structure performance in the original specification to

performance in the alternative specification demonstrates the trade-off between the

guarantees certain STO datatypes can provide, and their performance. For example,

by preventing a thread from viewing the result of its read until its transaction

completes, performance of the datatype more than doubles.
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1.3.1 Roadmap

This work is divided into the following parts:

• Background information on transactions and transactional memory, and

related work on transactional data structure algorithms and their scalability

(Chapter 2)

• An evaluation of different transactional and concurrent algorithms for queue

and hashmap data structures (Chapters 3 and 5)

• An explanation based on operation commutativity and invalid histories for

why concurrent algorithms for queues fail to retain their performance and

scalability in a transactional setting (Chapter 3)

• A demonstration of how the performance loss of queue concurrent algorithms

can be avoided through changing the queue operation specification to allow for

greater commutativity in a transactional setting (Chapter 4)

• A demonstration of, and explanation why highly-concurrent hashmap

algorithms do retain performance and scalability in a transactional setting

(Chapter 5)
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2
Background and Related Work

2.1 Transactional Memory

A transaction—a group of operations that together form one logical unit of work

and have atomic effect—allows a programmer to reason more simply about

concurrent access to shared state. The concept first developed in database theory,

trickled into file systems, and then expanded to other domains with the

development of hardware transactional memory (HTM) in 1986 and software

transactional memory (STM) in 1995 [14]. A transaction is commonly defined by
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the ACID properties: atomicity, consistency, isolation, and durability. Transactional

memory (TM) [14, 21] guarantees transactional properties in shared memory; this

differs from transactions in a database which (traditionally) work with data on disk.

TM is therefore unconcerned with the durability property: memory does not persist

on some permanent medium. However, TM must still adhere to the remaining three

ACI properties:

Atomicity ensures that, if a transaction commits, all changes made by the

transaction are instantly visible to other actors performing transactions (for

example, threads modifying shared memory or processes modifying a database). If a

transaction aborts, none of the changes made by the transaction are visible to any

other actor. Thus, either all or none of the operations of the transaction should

appear to succeed.

Consistency guarantees that a transaction begins and ends with the state of the

database or data structure satisfying particular (data structure-specific) invariants:

for example, an invariant could be that the data structure is left in a state without

duplicate entries.

Isolation ensures that a transaction’s execution appears to be isolated from any

other transaction’s (possibly simultaneous) execution. This allows for transactions

to be serializable, which means that one can find an ordering of committed

transactions that satisfies the observed history of results. In this ordering, it should

appear as if operations within one transaction are never interleaved with operations

in another transaction.

Transactional memory transactions also are linearizable [22]: all transactions

performed at a later clock time than a committed transaction observe the changes

made by the committed transaction. This allows programmers to easily determine

the order and effects of transactions.
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2.1.1 Transaction Execution and Commit Protocol

To use a transactional system, a programmer indicates the start and end of the

transaction. When the transaction finishes, it runs a commit protocol. The basic

commit protocol has four phases [14]:

1. Lock: Acquire the necessary locks to ensure protected access to any state the

transaction intends to modify.

2. Check: Any state observed by the transaction must be checked to ensure that

the state has not changed in a way that would invalidate the results of the

transaction. If the check fails, the transaction aborts. If the transaction passes

the check phase, the transaction will commit at this time.

3. Install: All modifications of the transaction are installed.

4. Cleanup: Release the locks acquired to protect any state modified by the

transaction. If the transaction aborts during Phase 2 (check) or at any time

during the transaction’s execution, cleanup also removes any changes that the

transaction may have made to the state.

The exact details of the commit protocol depend on whether the transactional

memory system is optimistic and/or pessimistic, and whether it uses eager and/or

lazy updates [14]. Optimistic transactional memory systems and pessimistic

transactional memory systems both track the transaction’s intended changes in the

transaction’s write set and any state observed during the transaction in the

transaction’s read set. An optimistic system checks for invalidated values in the read

set only at commit time. If all values are valid, the system performs the changes in

the transaction’s write set and the transaction is marked committed. Otherwise, the

transaction aborts and the system ensures that the transaction leaves no visible

effects (potentially rolling back any changes the transaction has made). An
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optimistic system therefore assumes (optimistically) that no other thread will

conflict with another thread’s transaction, and executes all operations of the

transaction before it checks if any conflict has indeed occurred. A pessimistic

transactional system instruments every read and write with additional checks to see

if another thread is simultaneously accessing the same part of memory and creating

a conflict. If any such conflicts are detected during the read or write, then the

thread either aborts or stalls until the conflicting transaction completes by either

committing or aborting.

Transactional memory systems also practice eager updates or lazy updates. A

system is eager when it updates shared memory during the transaction’s execution.

It maintains an “undo” log of changes, which is used if the transaction aborts and

the changes need to be undone. A system is lazy if it performs no updates to shared

memory until the transaction commits: all intended changes during execution are

buffered by the system, or written to a log and applied at commit time. Systems can

range from fully eager to fully lazy, with most practicing a mix of the two

techniques.

Transactional systems can also provide the opacity property [13], a property

that guarantees that the code running transactions will never observe an

inconsistent memory state. In other words, all the transaction’s reads must be

consistent with a single snapshot of memory at some point during the transaction.

Opacity ensures that potential failures such as infinite loops and invalid pointer

dereferences will never occur. With opacity, a transaction will abort immediately

upon observing an inconsistent state that would cause the transaction to fail at

commit time. Note that pessimism does not guarantee opacity: a transaction

performing read-only operations will not acquire locks on the data structure, and

may therefore observe an inconsistent state at some point during its execution. In
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certain systems such as STO, providing opacity requires keeping track of a global

transaction ID (TID). This global TID is used to check the consistency of previously

read items when the transaction observes a memory state. The TID is updated

whenever a transaction commits and modifies memory. Opacity hinders the

performance of the code running transactions because this TID must be accessed

whenever a transaction accesses memory (to check the state of previously read

items) and when a transaction commits. In our benchmarks, we disable opacity in

order to measure our transactional system at its maximum achievable performance.

2.2 Transactional Memory Systems

Transactional memory can be implemented in both hardware and software.

Although hardware transactional memory (HTM) naturally outperforms software

transactional memory (STM), a purely hardware TM has several inherent

limitations. HTM will fail when the working sets of the transactions exceed hardware

capacities; for example, the buffer used to track read and writes of the transaction is

restricted in size. In addition, HTM lacks flexibility because the granularity of reads

and writes is at the word level [41]. Nevertheless, with the increasing support for

HTM in computer hardware [24], integrating STM with HTM offers performance

improvements over what STM alone can achieve. We see integration with HTM as

potential future work to improve the performance of our data structures. For

example, we might take inspiration from the hybrid hardware-software TM system

first presented by Lie in 2004 [30]: a transaction would first run in hardware, and if

it fails, it would retry as a software transaction in the transactional data structure.

This would reduce the overhead incurred from transactional tracking, since most of

the overhead can be avoided if the transaction completes in hardware.
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The STO system [23] is one of several STM systems. For simplicity, we can

generalize STMs into three groups: word/object-based STMs, which track individual

memory words or objects touched during a transaction; STMs that expose

non-transactional APIs for performance gains; and abstraction-based STMs which

track items based on abstract datatypes.

TL2 [7] and LarkTM [42] are highly-optimized word-STMs that track memory

words touched during a transaction. SwissTM [8] is also a word-STM, but increases

performance by tracking memory in 4-word groups, resulting in less overhead than

tracking individual memory words. There have also been object-based STMs which

track objects instead of memory words, but incur extra cost by shadow copying any

objects written to within the transaction [20].

Open nesting [33], elastic transactions [10], transactional collection classes [4],

early release [19], and SpecTM [9] are techniques for implementing transactions

that, like STO, speed up transactional performance by reducing bookkeeping costs

and the number of false conflicts. However, these techniques expose

non-transactional APIs to the programmer. This complicates, rather than simplifies,

concurrent programming. For example, transactional collection classes remove

unnecessary memory conflicts in data structures by wrapping the datatype with

semantic locks; this requires designing multi-level, open-nested transactions, and

presents a much more complicated framework than does STO, which allows the

datatype to be designed specifically to support transactions.

STO falls in a category of STM systems that use abstraction to improve STM

performance [3, 12, 16, 18]. These systems expose a transactional API to

programmers in the form of transactional abstract datatypes that are written on top

of an STM. However, systems other than STO build their data structures on top of

traditional word-STMs, whereas STO builds data structures on top of an abstract
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STM which tracks abstract items defined by each data structure. This lets STO

improve performance beyond that of previous systems.

Our work focuses on abstract datatypes and how they perform within

transactional settings. We now take a closer look at STO and other abstract STM

systems that expose an API in the form of transactional data structures.

2.3 Abstraction-based STMs

STO consists of a core system that implements a transactional, optimistic

commit-time protocol, and an extensible library of transactional datatypes built on

top of this core. While programmers can use the many transactional datatypes

already implemented in STO (ranging from queues to red-black trees), programmers

can also use STO’s transactional framework to add transactional support to other

datatypes based on their particular semantics. STO allows datatypes to track

conflicts and changes using datatype-specific items, thereby reducing bookkeeping

costs by exploiting the semantics of the particular datatype.

Many STO datatypes enforce transactional correctness using versions that

correspond to items, which represent some part of the data structure state. A

version acts as a lock on the data structure: in order to update the data structure

state, a thread must first lock the version corresponding to the part of the state

being modified. A version tracks changes to the data structure by monotonically

increasing whenever a thread modifies the corresponding data structure item. Thus,

any version seen by a thread is equivalent to some previous or current state of the

data structure. When a transactional operation performs a read of some data

structure state, it adds a read of the corresponding version value. This read version

value is checked when the transaction commits to ensure that the observed data
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structure state is still valid: if the version value has changed, then the data structure

state has changed as well. The version’s value from the first time we perform a read

of the version is validated at commit time; this ensures that every observed state

since the start of the transaction is still valid.

STO also allows datatypes to use a variety of different concurrency control

algorithms. For example, STO’s transactional hashmap defines abstract items for

each bucket, which are invalidated only when the bucket size changes. This means

that transactions conflict only when modifying or reading the same bucket, allowing

scalable access to the data structure. In addition, at most one item is added to the

read or write set per operation, which can be orders of magnitude fewer than the

number of items tracked by a word- or object-based STM. STO allows datatypes to

define their own strategies for transaction execution: a datatype can insert elements

during transaction execution (eagerly) or wait until commit time to insert (lazily).

The specifics of the commit protocol are implemented as datatype callbacks. This

allows a datatype to use pessimistic strategies for certain operations, while using

optimistic strategies for others. STO is therefore a flexible hybrid of

optimistic/pessimistic and eager/lazy versioning strategies.

Boosting [18] is a method to convert concurrent (non-transactional) data

structures into transactional data structures. Like STO, boosting determines

conflicts between transactions by relying on a particular data structure’s semantics.

Instead of allowing each datatype to define read and write set items, however,

boosting maps a datatype’s operations to abstract locks. If two operations do not

commute—i.e., swapping the order of their invocations affects the final state of the

data structure or the responses returned by the operations—then the abstract locks

for the operations will conflict. For one of the operations to be performed, both the

abstract lock for that operation and the abstract lock for the conflicting operation
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must be acquired. Thus, the granularity of synchronization of the original

linearizable data structure is only achievable for commutative operations in its

boosted form. Because a transaction may abort, boosting practices undo logging

and requires that each operation has an inverse. These constraints mean that

boosting is not applicable to all data structures, but allow boosting to be

particularly useful for data structures like sets. Unlike boosting, STO allows us to

work with data structures whose operations have no inverse. Boosting is an

inherently pessimistic strategy, using eager versioning, whereas STO allows for a

hybrid approach that can improve performance.

Optimistic boosting [16] is a technique meant to improve the performance of

boosting. It proposes an optimistic approach in which acquisition of the abstract

locks is delayed until commit time. During execution, semantic items are added to

the read and write sets of the transaction and validated at commit time; if all reads

are valid, then the appropriate abstract locks are acquired and modifications applied

to the data structure. Because execution is optimistic and abstract locks are not

eagerly acquired at the higher, “boosted” level, the underlying concurrent data

structure can be lazy and wait until commit time to execute operations. This adds

support for operations that may not have an inverse. However, optimistic boosting

has not been shown to be effective in practice. STO provides a more flexible, hybrid

transactional framework and outperforms optimistic boosting.

Automated locking [12] takes a similar approach to boosting by pessimistically

acquiring abstract locks corresponding to each operation. It differs from boosting

because it also takes a datatype-specific commutativity specification of conditions in

which operations commute. The commutativity specification of an abstract

datatype is compiled into a symbolic set (called a “locking mode”) that is used to

prevent conflicting operations from being run concurrently. If two operations
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commute, the “locking mode” allows them to run concurrently. This approach

optimizes and automates the creation of abstract locks for an abstract data

structure. A similar approach may help STO data structures choose which abstract

read and write items to track during a transaction to avoid false conflicts.

Predication [3] is a technique that maps operations to “predicate words”

contained in a shared-memory table managed by the STM. Each predicate word

represents a property of the data structure. For example, looking up an element e in

a set would be associated with an {in_set?(e)} predicate word, and the STM

would add reads or writes of the predicate word when e is removed or added to the

set. Unlike boosting, transactional predication achieves semantic conflict detection

without keeping an undo log. However, predication must insert predicate words into

the table for absent as well as present lookups, causing a garbage collection problem

that STO and other systems do not face. Transactional predication also focuses on

making transactional data structures perform equally as well as highly-concurrent

data structures in non-transactional settings. This is orthogonal to our work here,

and can be a future line of optimization for STO data structures.

The Transactional Data Structures Libraries (TDSL) [38], like STO, offer

collections of transactional data structures for programmers to use. Similar to STO,

each TDSL data structure executes transactions with a customized mix of

pessimistic, optimistic, eager, and lazy strategies. This allows for optimizations that

rely on the specific data structure’s semantics. Unlike STO, data structures in

TDSL are also optimized for single-operation transactions (which we see as an

orthogonal line of work). While TDSL contains only a queue and a skiplist, STO

has implementations of many other data structures in transactional settings,

including a hashmap, list, priority queue, and red-black tree. Our work in this thesis

draws upon some of the algorithm designs for the queue implemented in TDSL.
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This thesis investigates the integration of several non-transactional, concurrent

data structures with STO. In particular, we test and modify different concurrent

queue and concurrent hashmap algorithms, which we describe in more detail in

Chapters 3 and 5. Similar work has been done with lazy sets [15], in which

transactional support is added to a lazy concurrent set. We extend this work to

other data structures, and investigate further how to achieve performance close to

highly concurrent, non-transactional data structures.

2.3.1 Commutativity in Transactional Data Structures

Both STO and the other methods of integrating concurrent abstract datatypes with

STM declared above build upon the ideas introduced by Weihl in the late

1980s [40]. Weihl defines optimal local atomicity properties that datatypes must

satisfy in order for transactions to be serialized, and uses these properties to provide

an upper bound on the amount of concurrency achievable in transactional

datatypes. These local properties are derived from algebraic properties of the data

structure, such as commutativity of particular operations. Weihl also demonstrates

an inherent relation between commutativity-based concurrency control and

transactional recovery algorithms. Unlike our work with STO, however, Weihl does

not focus on the concrete implementation of transactional datatypes.

Schwarz and Spector [35] introduce a theory for ordering concurrent

transactions based on the semantics of shared abstract datatypes and the

dependencies of different datatype operations. For each operation, the programmer

specifies the operation’s preconditions, postconditions, and invariants. To describe

interactions between operations in a transaction, the programmer additionally

provides an interleaving specification. This defines dependency relations between
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datatype operations. From this set of dependency relations, Schwarz and Spector

can define the limits of concurrency for the datatype by drawing upon results from

Korth [26] that show that when two operations commute (i.e., have no

inter-dependencies), the order in which the operations are ordered does not affect

serializability. We discuss this work further in Chapter 4.

Schwarz and Spector also demonstrate that increased concurrency can be

achieved by weakening the serializability of transactions: once the semantics of a

datatype have been taken into account, the remaining constraints on concurrency

come from enforcing transactional guarantees [28]. A transactional datatype that

makes weaker ordering guarantees than serializability is able to achieve a level of

concurrency closer to that implied by the semantics of its operations. They

exemplify this with a WQueue design: a higher-concurrency queue with modified

semantics that preserves a weaker ordering property than serializability. However,

their paper focuses on the theoretical result instead of the implementation, and is

not concerned with explicit synchronization algorithms for the queue. Our work in

Chapter 4 with the weak transactional queue builds off this idea of weaker

transactional guarantees, but modifies the queue operation interface rather than

weakening the serializability requirement of transactions.

Badrinath and Ramamritham [2] define recoverability, a weaker notion of

commutativity that can achieve enhanced concurrency. An operation q is

recoverable with respect to another operation p if the observable effects of q are the

same regardless of whether p executes immediately before q, or whether p executes

some time prior to, but not immediately before q. If p and q are in separate

transactions and do not commute, but q is recoverable with respect to p, then both

operations can be eagerly applied to the data structure under the condition that if p

is applied before q, then the transaction calling p must commit before the
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transaction calling q. This condition implies a commit dependency between the two

transactions. If the commit dependencies generated by all recoverable operations

form a cycle between parallel-executing transactions, one of the transactions in the

cycle must abort and undo its operations. However, only one transaction in any

commit dependency cycle will have to abort. This prevents issues such as cascading

aborts, in which one transaction’s abort causes the abort of another transaction,

which causes the abort of a third transaction (and so on).

Thus, recoverability enforces operation orderings at transaction commit time

rather than execution time: if one operation is recoverable with respect to another,

both operations can be executed in parallel so long as the transactions commit in

the correct order. If the transactions cannot both commit (because of a dependency

cycle), then one transaction must abort and undo its operations. Our work in

Chapter 4 similarly examines how eagerly executing operations induces an ordering

on transactions’ commit operations, but discusses commutative, instead of

recoverable, operations.

Kulkarni et al. [27] define the notion of a commutativity lattice (predicates

between pairs of methods) to reason about commutativity in a data structure. The

Galois system, upon which this idea is tested, provides a framework in which the

programmer defines a commutativity lattice for individual data structures and, by

exploiting commutativity, improves the performance of irregular parallel

applications. Galois, however, focuses on constructing commutativity checkers

instead of serializing transactions.

Commutativity work has also played a large part in optimizing distributed

transactions. Mu et al. [32] introduce a system, ROCOCO, that first distributes

pieces of concurrent transactions across multiple servers. These servers then

determine dependencies between their pieces of concurrent transactions based on

19



the commutativity of operations in the transactions. Transaction execution is

delayed until commit time, when its corresponding dependency information is sent

to all servers via a coordinator, allowing the servers to re-order conflicting pieces of

the transaction and execute them in a serializable order. This reduces aborts and

unnecessary conflicts. Finally, commutativity has also been explored in network

consistency algorithms and conflict-free replicated data types (CRDTs) [37].
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3
FIFO Queue Algorithms and Analysis

This chapter investigates different concurrent and transactional algorithms for

queues in order to draw conclusions about concurrent queue algorithms in

transactional settings. We begin with an overview of concurrent and transactional

queue specifications and algorithms. We then evaluate how these queues perform on

several microbenchmarks. Given our results, we conjecture that highly-concurrent

queue algorithms are inherently non-transactional: the optimizations taken by these

algorithms rely on data structure state and behaviors that must be modified to

support transactions. In other words, the synchronization mechanisms of
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highly-concurrent queue algorithms interfere with the mechanisms that STO uses to

provide transactional guarantees.

3.1 Transactional Queue Specification

A concurrent queue supporting operations push and pop must adhere to the

following specification:1

• No duplicate pops: a value is popped off the queue only once.

• No duplicate pushes: a value is pushed onto the queue only once.

• Correct ordering: values are popped in the order in which they are pushed.

A transactional queue adds the following invariants to the specification. There must

be a serial order of all transactions such that, within one transaction:

• Any two pop operations pop consecutive values in the queue starting from the

head of the queue. This includes values pushed onto the queue by previous

push operations in the transaction.

• Any two push operations push consecutive values at the tail of the queue.

To satisfy these invariants, transactional data structures must support

read-my-writes. This is when the effect of a transactional operation depends on the

effects of previous operations within the same transaction.

3.2 Naive Synchronization Queue Algorithms

STO provides two transactional FIFO queues that support push and pop operations

with the interface shown in Figure 3.2.1. These transactional queue algorithms are

1In the following discussion of our queue algorithms, we omit the discussion of the front operation
to simplify reasoning about the state of the queue. An appropriate algorithm for front can be easily
inferred from that used for pop.
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// push adds value v onto the tail of the queue
// always succeeds
void push(const value_type& v);

// pop removes a value from the head of the queue
// succeeds if the queue is nonempty
bool pop();

Figure 3.2.1: Queue Operations Interface

designed with transactional correctness primarily in mind, and concurrency as a

secondary concern.

3.2.1 T-QueueO

T-QueueO is an optimistic transactional queue, and implements a bounded-length

transactional queue using a circular buffer. It supports transactional operations

push and pop, and is implemented using optimistic concurrency control (OCC).

This means that two threads can simultaneously access the queue while executing

their transactions. At commit time, the threads check if the queue has changed in a

way that would invalidate their transactions. T-QueueO exposes two versions for

checking the state of the queue: the head version and the tail version. The head

version, which tracks the state of the head, is used to check if another thread has

popped from the queue, and the tail version, which tracks the state of the tail, is

used to check if another thread has pushed onto the queue.

A transactional push adds to an internal write_list, which holds a

thread-local list of values to be pushed onto the queue at commit time. At commit

time, the tail version acts as a lock to prevent any other thread from pushing onto

the queue. After locking the tail version, the thread pushes all values on the

write_list onto the queue and increments the tail version. If the queue is full, the
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queue will raise an assertion error. If a transaction performs only pushes, then the

transaction will always commit unless the bounded size overflows: a push does not

observe any property of the queue, such as the value at the head of the queue or the

emptiness of the queue.

A transactional pop first checks if the queue will be empty by observing the

current state of the queue, and by taking into account how many values the current

transaction is already intending to pop. If the queue will not be empty, the pop

returns true. When the thread commits, it must ensure that the head of the queue

has not been modified by another thread. This is done by comparing the value of

the head version at the time of the pop with the value at commit time.

If the queue will be empty, the thread checks for earlier pushes by the same

transaction: if the thread intends to push a value onto the queue in this transaction,

then the thread removes the value from its write_list and returns true.

Otherwise, the return value of the pop is false. At commit time, the thread must

check that the queue is still empty by validating the value of the tail version, which

increments each time a value is pushed onto the queue. When a transaction that

performs one or more pops commits, it locks the head version (ensuring atomic

access to the head of the queue), removes a value from the head of the queue for

every successful transactional pop call, and increments the head version.

3.2.2 T-QueueP

T-QueueP is also a bounded-length transactional queue with a circular buffer

supporting operations push and pop. T-QueueP’s algorithm is a hybrid design,

using T-QueueO’s optimistic algorithm for pushes, and pessimistic locking for pops.

This takes inspiration from the transactional queue from the Transactional Data
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Structures Libraries [38]. We hypothesize that T-QueueP will perform better than

T-QueueO, based on the TDSL benchmarks results showing that the TDSL

pessimistic transactional queue achieves better performance than T-QueueO.

Adding pessimistic locking is done by locking the queue when any pop (a

naturally contentious operation) is invoked. The queue is then unlocked only after

the transaction is complete. This ensures that no thread will execute a pop that will

invalidate another thread’s transactional pop. However, a push in T-QueueP follows

the same protocol as a push in T-QueueO. Because execution of a push is lazy and

delayed until commit time, a transactional push can execute without invalidating

another transaction. A push therefore does not acquire a lock at execution time, but

rather only needs to lock while installing all the transaction’s pushes at commit

time.

Because a transactional pop locks the queue, there are no conflicts at commit

time after a thread performs a transactional pop. A thread only aborts if it fails to

obtain the lock after a bounded period of time. The one version, “queueversion,”

acts as the global queue lock.

3.3 Flat Combining Queue Algorithms

Given the relatively slow performance of T-QueueO and T-QueueP compared to the

best-performing highly-concurrent queue algorithms (see Section 3.4.5), we looked

for a highly-concurrent, non-transactional queue algorithm that might be promising

to use in STO’s transactional framework. After running several benchmarks (see

Figure 3.4.5), we found the most promising to be the flat combining technique,

which not only outperforms other queue algorithms, but also addresses several of

the bottlenecks we observe in T-QueueO and T-QueueP.
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3.3.1 Non-Transactional Flat Combining Queue

Flat combining, proposed by Hendler et al. in 2010 [17], is a synchronization

technique that is based upon coarse-grained locking and single-thread access to the

data structure. The key insight is that the cost of synchronization for certain classes

of data structures often outweighs the benefits gained from parallelizing access to

the data structure. These classes of data structures include high-contention data

structures such as stacks, queues, and priority queues. Created with this insight, the

flat combining algorithm proposes a simple, thread-local synchronization technique

that allows only one thread to ever access the data structure at once. This both

reduces synchronization overhead on points of contention (such as the head of a

queue) and achieves better cache performance by leveraging the single-threaded

access patterns during data structure design.

A flat combining data structure has three parts: (1) a sequential

implementation of the data structure, (2) a global lock, and (3) per-thread records

that are linked together in a global publication list. A thread uses its record to

publish to other threads the specifics of any operation it wants to perform; the

result of the operation is subsequently written to and retrieved from the record.

When a thread T wishes to perform an operation O:

1. T writes the opcode and parameters for O to its local record. Specifically for

the queue, T writes <PUSH, value> or <POP,()> to its local record.

2. T tries to acquire the global lock. Depending on the result:

(a) T acquires the lock and is now the “combiner” thread. T continually

iterates through the publication list and applies all the thread requests in

the list in sequence, writing both the result and an <OK> response to each

requesting thread’s local record. T stops this process when the number of
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iterations in which no operations are performed increases above 50%, and

then releases the lock.

(b) T failed to acquire the lock. T spins on its record until another thread

has written the result to T ’s record with the response <OK> or the lock is

released, in which case T acquires the lock and becomes the combiner

thread.

When used to implement a concurrent queue, flat combining proves to be an

effective technique for handling the contention caused by parallel access on the head

and tail of the queue. In addition, the flat combining queue uses a sequential queue

implementation with “fat nodes” (arrays of values, with new nodes allocated when

the array fills up), which both improves cache performance and allows the queue to

be dynamically sized. Both T-QueueO and T-QueueP suffer from the contention

and cache performance issues pointed out in the flat combining paper, leading us to

believe that the alternative synchronization paradigm offered by flat combining may

improve the performance of a transactional queue just as it does for a concurrent

one.

3.3.2 Transactional Flat Combining Queue

Recall that, in addition to the requirements for a correct concurrent queue, a

transactional queue must guarantee that there exists a serial order of all transactions

such that, within one transaction, any two pops pop consecutive values in the queue

starting from the head of the queue, and any two pushes push consecutive values at

the tail of the queue. This means that we must consider the order in which threads’

requests are applied to the queue to be able to create a transactionally correct flat

combining queue. For example, let a transaction in thread T1 be {pop, pop} and a
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transaction in thread T2 be {pop}. The combiner thread sees that T1 has published

<POP,()> and T2 has published <POP,()> to the publication list. The combiner

thread then applies T1:Pop (popping the head of the queue) and T2:Pop (popping

the second value on the queue). When the next combining pass executes, the

combiner thread will see that T1 has published <POP,()> again to the queue.

However, performing T1’s second pop violates transactional guarantees: the two

popped values in T1’s transaction will not be consecutive. This sequence is shown in

Figure 3.3.1. T1 must now abort, which means that T2’s pop becomes invalid: it

popped the second-frontmost value of the queue, rather than the head of the queue.

Detecting these invalid orderings requires two important changes to flat

combining (we describe the rationale for these changes in Chapter 4):

1. A push cannot be applied to the queue during a transaction’s execution, and

must instead be performed when a transaction commits. A push still only

needs to make one flat combining call, because pushes do not need to access

the queue until commit time: a push returns no observable value to the caller.

2. An uncommitted pop in a thread’s transaction must be unobservable by any

other thread. This can be implemented in two ways:

(a) The algorithm can delay a transaction’s pops until commit time. This

then means the algorithm must track which values in the queue are going

to be popped by the transaction. This prevents duplicate pops and

detects if the queue will be “empty” by tracking how many values will be

popped off the queue during this transaction. If another thread performs

a pop or push during the transaction’s lifetime, this can cause the

transaction to abort: the “empty” status of the queue at commit time

may now be inconsistent with what the transaction saw during execution.

A pop therefore accesses the queue twice, once at execution time to see if
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the pop can succeed, and again to check and commit the pop at commit

time.

(b) The algorithm does not execute flat combining requests from other

threads until the transaction has committed or aborted (a pessimistic

approach). Because only this thread can execute commands, pops can be

performed eagerly at execution time, and restored to the head of the

queue if the transaction aborts. This can be implemented either by

aborting the other threads’ transactions, or by forcing the other threads

to block or spin. A pop therefore accesses the queue twice, once at

execution time to execute the pop, and again to release the queue after

committing so that other threads can execute flat combining requests.

Because both approaches for a pop access the queue twice, a pop now requires

two flat combining requests instead of the single request required by the

non-transactional flat combining queue. We choose to implement approach (a)

based on microbenchmarks that show that approach (b) is both more

complicated and less performant.
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Figure 3.3.1: This sequence of operations applied to the queue is a pos-
sible interleaving that will cause both transactions T1 and T2 to abort. A
transactional flat combining queue must ensure that all pops in one trans-
action are consecutive and are of the head of the queue. In this example,
T1 performs two pops and T2 performs one pop. The combiner thread ap-
plies T1’s first pop, then T2’s pop, and finally T1’s second pop. Because
T1’s pops are not popping consecutive values off the queue, T1 is an in-
valid transaction, and must abort when it commits (not shown). When T1
aborts, the head (v0) of the queue is restored. T2 now becomes an invalid
transaction because it popped a value that was not the head of the queue.
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We now describe the new algorithms for push and pop. We change the types of

requests a thread can publish to its record on the publication list. Recall that the

original flat combining queue supports two requests: <PUSH, value> and <POP,

()>. The transactional queue supports the follow requests:

• <PUSH, list> : push a list of values onto the queue

• <MARK_POP, thread_id> : mark a value in the queue as “to be popped” by

this thread_id

• <DEQ, thread_id> : dequeue all values in the queue that are marked “to be

popped” by this thread_id

• <EMPTY?, thread_id> : check that (1) the queue, after popping all items

marked by this thread_id, is empty, and that (2) no other transactions have

performed a sequence of concurrent updates that increased the queue size, but

then returned it to empty.

• <CLEANUP, thread_id> : unmark all values that are marked with this

thread_id

As with T-QueueO and T-QueueP, a push within a transaction adds to an

internal write_list. At commit time, the thread will post a <PUSH, list> request

with the write_list passed as the argument.

A pop is implemented with a pessimistic approach. Performing a pop within a

transaction invokes the <MARK_POP, thread_id> request. The combiner thread,

upon seeing a MARK_POP request, looks at the first value at the head of the queue. If

this value is marked with another thread’s thread_id, the combiner thread returns

<ABORT> to the calling thread. This scenario is shown in Figure 3.3.2.

If the value is not marked, the combiner thread marks the value with the

caller’s thread_id and returns <OK>. Note that in this scenario, no other thread will
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Figure 3.3.2: T1 and T2 both attempt to mark the head of the queue
with their thread_id. T1’s request is applied first, and marks the value
v0 with the thread_id 1. The combiner thread attempts to apply T2’s
request and sees T1’s thread_id marking the head of the queue. It then
signals T2 to abort.

be able to mark values in the queue until the calling thread commits or aborts:

another thread will abort if it sees that the head value is marked by the calling

thread’s thread_id.

If the value is neither marked by another thread nor unmarked, then the value

must already be marked with this thread’s thread_id. The combiner thread then

iterates sequentially through the queue, starting from the head, until it reaches a

value not marked by the calling thread’s thread_id. It then marks the value with

the caller’s thread_id and returns <OK>. Upon receiving the response, the calling

thread adds a write to a pop_item to tell the thread to post a <DEQ, thread_id>

request at commit time. This request will tell the combiner thread to remove the

popped value from the queue. This procedure is shown in Figure 3.3.3.

If the queue is empty, or all values are marked with the caller’s thread_id, the

32



Figure 3.3.3: T1 performs a pop by sending a MARK_POP request, and
marks the value in the queue with its thread_id 1. At commit time, T1
actually performs the pop by sending a DEQ request.

combiner thread will return <EMPTY>, which is remembered by the calling thread.

An <EMPTY> response requires that the size of the queue be checked at commit time.

If the calling thread has previously performed a push in the same transaction, the

transaction removes the head of the write_list; in this case, the transactional pop

returns true. Otherwise, the pop returns false.

The <EMPTY?, thread_id> request is posted during the check at commit time

when a thread tries to commit a transaction that observed an empty queue at some

point in its execution. This happens when the thread observes an <EMPTY> response

to a <MARK_POP> request during the transaction’s execution. If EMPTY? returns true,

then the queue is empty at commit time. No concurrent modifications to the queue

have been performed since the time the thread saw an empty queue while
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performing a <MARK_POP>, and the transaction can safely commit. If instead EMPTY?

returns false, then the thread knows the queue is no longer empty—another thread

has pushed values onto the queue—and this thread’s <MARK_POP> result is invalid.

The transaction must therefore abort. This scenario is shown in Figure 3.3.4.

Note that in order for the check of EMPTY? to correctly verify the empty state

of the queue at commit time, it needs to check both that the queue is empty, and

that there have been no concurrent updates by other transactions that add values to

the queue and then return the queue to an empty state. Our implementation checks

for such concurrent updates using an empty predicate version. This version is

updated when a transaction installs a push, and a transaction that observes an

empty queue during a pop adds a read of this version. This version is checked by the

EMPTY? call at commit time, which will return false if the version has changed

since the time it was observed.

The <CLEANUP, thread_id> request is posted when a thread aborts a

transaction and must unmark any values in the queue that it had marked as pending

pops. The combiner thread iterates through the queue from the head and unmarks

any values with the thread_id. An example of this is shown in Figure 3.3.4.
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Figure 3.3.4: This sequence shows how a transaction can abort when
checking <EMPTY?> in the transactional flat combining queue. T2 tries
to pop from an empty queue, and sees the queue is empty. This means
that when T2 commits, T2 will have to check if the queue is empty. T1
commits its transaction and pushes v0 onto the queue (recall that a push
only executes at commit time). T2 then tries to pop another value off the
queue and sees v0, marking it with its thread_id 2. T2 tries to commit,
but observes that the queue is no longer empty: T2 must abort. When T2
aborts, it must clean up any markers it left in the queue.
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3.4 Evaluation

3.4.1 Microbenchmarks

We evaluate all the queue implementations on a set of microbenchmarks to

determine their scalability and performance. The controlled nature of these

microbenchmarks allows us to compare particular aspects of each algorithm, such as

transactional overhead introduced by STO. All experiments are run on a 100GB

DRAM machine with two 6-core Intel Xeon X5690 processors clocked at 3.47GHz.

Hyperthreading is enabled in each processor, resulting in 24 available logical cores.

The machine runs a 64-bit Linux 3.2.0 operating system, and all benchmarks and

STO data structures are compiled with g++-5.3. In all tests, threads are pinned to

cores, with at most one thread per logical core. In all performance graphs, we show

the median of 5 consecutive runs with the minimum and maximum performance

results represented as error bars.

Parameters

Value Types. Each queue benchmark uses randomly chosen integers because the

benchmarks do not manipulate the push or popped values, and the queue

algorithms are agnostic to the actual values being placed in the queue.

Initial Queue Size. We run our tests with varying numbers of initial entries in

the queue. This affects how often the structure becomes empty, which can cause

aborts and additional overhead (as described in the algorithms above). It also

affects the number of cache lines accessed: a near-empty queue will never require

iterating over values contained in more than one cache line.

Operations per transaction. We set the number of operations per transaction to

1 (i.e., the transactions are singleton transactions). By keeping a transaction as
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short as possible, we maximize the impact of any fixed per-transaction overhead.

However, we also minimize the performance hit from the additional, variable

transactional overhead required to execute and commit larger transactions: running

multiple-operation transactions requires multiple-item support in read and write

sets, creates scenarios of read-my-writes, and increases the number of aborts and

retries, all of which incur additional overhead. Because most highly-concurrent data

structures provide guarantees equivalent to those of singleton transactions, we use

singleton transactions when comparing transactional and non-transactional data

structures.2

Tests

2-Thread Push-Pop Test. This test has one thread that performs only pushes and

another thread that performs only pops (a traditional “producer-consumer” model).

Each thread performs 10 million transactions. Unless the queue is empty, the two

threads should never be modifying the same part of the data structure and will

never conflict, leading to an abort rate that should be near 0. We use this test to

measure the speed of push/pops on the queue under low or no contention. We

expect that our transactional queues should perform just as well as the

highly-concurrent queues, if not better: while highly-concurrent, non-transactional

algorithms are optimized for multi-threaded access, our simpler implementation

should be just as fast with low contention and low abort rates.

Multi-Thread Singletons Test. In this test, a thread randomly selects an

operation (push or pop) to perform within each transaction. This keeps the queue at

approximately the same size as its initial size during the test. Each thread performs

2Our data structure implementations can correctly handle multiple-operation transactions: we
simply benchmark them with singleton transactions to compare performance.
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10 million transactions. We run this test with different initial queue sizes and

different numbers of threads, with each thread performing singleton transactions.

Altering the number of threads allows us to benchmark performance under variable

amounts of contention. We expect that T-QueueO and T-QueueP will perform

significantly worse once the number of threads is increased, and that these naive

synchronization algorithms will underperform synchronization algorithms optimized

for contentious situations.

3.4.2 Overview of Results

We first present an overview of our conclusions, then explain each conclusion in

more detail by proposing a sequence of five hypotheses tested using the benchmarks

described above. For each hypothesis, we use our benchmark results to formulate a

conclusion that either refutes or supports the hypothesis. We provide a few figures

that highlight our results; full results (including abort rates) can be found in

Appendix A. We draw the following conclusions from our results (corresponding to

our five hypotheses):

1. An implementation of a transactional queue using a pessimistic approach for

pop outperforms one using an optimistic approach.

2. Transactional queues using a naive synchronization algorithm can perform

reasonably well compared to concurrent, non-transactional queue algorithms.

3. The flat combining technique is a highly effective synchronization technique

for concurrent queues, and the flat combining, non-transactional queue

outperforms all transactional and concurrent queues.

4. Fixed overhead from bookkeeping STO wrapper calls is negligible.

5. The transactional flat combining queue underperforms all other transactional
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STO queues. Transactional flat combining’s low performance is caused by the

greater number and greater complexity of flat combining calls that are

necessary in a transactional setting.

3.4.3 Hypothesis 1

A transactional queue using a pessimistic algorithm for pop outperforms

one using an optimistic algorithm for pop. (Supported)

We test this hypothesis by comparing the performance of T-QueueO and T-QueueP.

Recall that a thread running on T-QueueP locks the queue immediately when it

performs a transactional pop—therefore pessimistically assuming that any other

thread accessing the queue will cause a conflict with its pop operation—while a

thread running on T-QueueO does not acquire any locks until commit time.

The comparative performance of T-QueueO and T-QueueP (Figure 3.4.1) on

the Multi-Thread Singletons Test demonstrates that our pessimistic implementation

of pop is more effective than our optimistic one. T-QueueP performs slightly better

than T-QueueO. This is likely due to T-QueueP’s lower abort rate (1/3 that of

T-QueueO). When a pop is performed, T-QueueP locks the queue and prevents any

other thread from observing an inconsistent state, whereas T-QueueO does not

acquire any locks and allows other threads to observe inconsistent state (i.e.,

execute a pop of the head that is about to be popped by another thread).

Observation of inconsistent state causes aborts at execution and commit time. This

result supports the claim that a pessimistic approach to contentious operations such

as pop benefits performance.

On the Push-Pop Test, T-QueueP’s performance is double that of T-QueueO’s
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Figure 3.4.1: T-QueueO vs. T-QueueP Performance: Multi-Thread Single-
tons Test

performance (Figure 3.4.2). This result is initially surprising, because the Push-Pop

Test is a low-contention test; the abort rates, as expected, are near 0, with aborts

only occurring because the threads spin too long while acquiring locks. We should

therefore expect that T-QueueP performs approximately equal to T-QueueO.

However, this is clearly not the case.

Our results for the Push-Pop Test can be explained by the different speeds of

the push and pop operations in T-QueueO and T-QueueP. Figure 3.4.3 shows that

T-QueueP’s push-only thread performs 10 million pushes per second, while

T-QueueO’s push-only thread performs only about 3.1 million pushes per second.

T-QueueP’s pop-only thread, when simultaneously running with the push-only

thread, performs about 0.2 million pops per second, while T-QueueO’s pop-only

40



Figure 3.4.2: T-QueueO vs. T-QueueP Performance: Push-Pop Test (2
threads)

thread, when running simultaneously with the push-only thread, performs about 2

million pops per second (achieving speed 10× that of T-QueueP’s pop-only thread).

Table 3.4.1 summarizes this result in terms of the ratio of pops to pushes completed

by each queue: when both the push-only and pop-only threads are simultaneously

running, T-QueueP’s pop-only thread performs only 28 pops for every 100 pushes

the push-only thread performs, while T-QueueO’s pop-only thread performs 64 pops

for every 100 pushes the push-only thread performs. Once the push-only thread

exits, however, both queues’ pop-only threads perform pops at a speed of about 10

million pops per second.

The increased speed of a pop once the push-only thread has exited can be

explained by the decrease in contention when only one thread is executing. The
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Figure 3.4.3: T-QueueO vs. T-QueueP Push-Pop Test: Speed at which
the push- and pop-only threads complete 10 million transactions

Queue Pops per 100 Pushes
T-QueueO 64
T-QueueP 28

Table 3.4.1: T-QueueO vs. T-QueueP Push-Pop Test: Ratio of pops to
pushes when the push-only and pop-only threads are executing simultane-
ously

speed of a pop when the push-only thread is no longer executing is equal to the

speed of a single-threaded pop execution. Single-thread execution on the queue

results in better cache line performance (there can never be cache line bounces,

because only one thread accesses the queue); furthermore, there is zero contention

on the queue locks.

T-QueueP’s pushes execute significantly faster than do T-QueueO’s, and the

pushes also appear to be preventing T-QueueP’s pops from executing quickly. This

is because T-QueueP uses only one queue version as a global queue lock. Both a
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push and pop contend on this lock in order to install an operation; the push-only

thread can potentially starve the pop-only thread by continuously succeeding in

acquiring the lock. Because of this starvation property, the push-only thread and

pop-only thread in T-QueueP run in a near-sequential fashion, with the push-only

thread running first, and the pop-only thread running second. Sequential execution,

as discussed earlier, achieves better performance because of the lack of contention.

T-QueueP therefore has greater performance because its threads run in nearly a

sequential fashion.3

T-QueueO, on the other hand, uses two versions (head and tail versions) as

locks, and each thread acquires only one of these locks when performing an

operation. This allows both threads to execute operations at a more equal rate,

since one cannot starve the other. However, because of the added contention on the

cache lines containing the head and the tail of the queue, both the push-only and

pop-only threads execute at rates far slower than sequential execution.

We conclude that the unexpected results of the Push-Pop Test are caused by

the lock shared by T-QueueP’s push and pop operations. This leads to a

near-sequential execution of 10 million pops followed by 10 million pushes.

While the improved performance of T-QueueP on the Push-Pop Test is likely

caused by our choice of how to implement the pessimistic pop, our results on both

tests nevertheless support our hypothesis. They indicate that our pessimistic

approach does reduce the abort rate under high contention and lead to slightly

better performance. However, the better performance of T-QueueP comes with the

caveat that a thread attempting to perform pop operations may experience

3We note that T-QueueP’s execution pattern also has the fortunate side effect of decreasing the
probability that the queue becomes empty, since a greater number of pushes complete for every pop
operation that completes. However, starvation of pops can lead to issues in certain scenarios, such
as ones that require the queue to be kept at a relatively constant size.
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starvation if another thread is performing push operations.

SUPPORTED: T-QueueP outperforms T-QueueO, indicating that a pessimistic

approach for pop can outperform an optimistic approach.

3.4.4 Hypothesis 2

Under low contention, a transactional queue with a naive concurrent

algorithm performs reasonably well compared to the best concurrent,

non-transactional queue algorithms. (Supported)

We benchmark a set of the best-performing highly-concurrent queue algorithms

against our transactional queue implementations, T-QueueO and T-QueueP, using

our low-contention test (the 2-Thread Push-Pop Test) that is also optimized for a

low abort rate. This acts as a best-case scenario for T-QueueO and T-QueueP

algorithms. Selected results are shown in Figure 3.4.4.

Our implementation of the non-transactional flat combining queue, which we

call NT-FCQueue, uses the flat combining queue implemented by the authors of the

flat combining paper [17] (with minor modifications to remove memory leaks). Our

implementations of the other concurrent queues are taken from the open source

Concurrent Data Structures (CDS) library implementations [25].

All concurrent, non-transactional queues achieve approximately equal

performance on the Push-Pop Test besides NT-FCQueue, Segmented Queue [1], and

TsigasCycle Queue [39]. T-QueueP outperforms all queues by at least 150% on the

2-thread Push-Pop Test. This is, as we discussed earlier, likely caused by

T-QueueP’s near-sequential execution on this test. We see in Table 3.4.2 that most

queues perform more than 1 pop for every 2 pushes while the push-only thread is

running. We also observe that NT-FCQueue is the only queue in which 10 million
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Figure 3.4.4: Non-transactional, Concurrent Queue vs. Transactional
Queue Performance: Push-Pop Test (2 threads)

pops complete faster than 10 million pushes, and has nearly a 1:1 ratio of pops to

pushes. This may explain its poor performance on the Push-Pop Test as compared

to the other queues (fewer pop operations are executed in a single-threaded manner

after the push-only thread has exited).

Regardless of the difference in speed between the push-only and pop-only

threads, we see that our naive algorithms perform at least as well as the majority of

concurrent algorithms on this test. T-QueueO performs about equally as well as any

non-transactional queue, and the ratio of pops to pushes in T-QueueO is close to

that of these non-transactional queues.

The Push-Pop Test is designed for low abort rates and minimal transactional

overhead from tracking items in read and write sets. It is therefore unsurprising
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Queue Pops per 100 Pushes
T-QueueO 64
T-QueueP 28

NT-FCQueue 110
Basket 42
Moir 62

Michael-Scott 54
Optimistic 50
Read-Write 84
Segmented 50
TsigasCycle 52

Table 3.4.2: Non-transactional Queues vs. T-QueueO and T-QueueP
Push-Pop Test: Ratio of pops to pushes when the push-only and pop-only
threads are executing simultaneously

that, on this test, a simple synchronization strategy can outperform the majority of

highly-concurrent algorithms which are optimized for scalability. Our results

demonstrate that a simple implementation of a naive algorithm can consistently

outperform more complex concurrent queue implementations, even when supporting

transactions using STO. The overhead added from STO does not inherently cripple

performance—our transactional data structures can compete with several

highly-concurrent, non-transactional data structures in particular cases.

SUPPORTED: T-QueueP and T-QueueO outperform or match the performance

of all concurrent, non-transactional queues on the 2-Thread Push-Pop Test. This

indicates that a simple concurrent algorithm in a transactional setting can perform

well under optimal circumstances.
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Figure 3.4.5: Non-transactional, Concurrent Queue vs. Transactional
Queue Performance: Multi-Thread Singletons Test

3.4.5 Hypothesis 3

The flat combining algorithm is the most promising concurrent queue

algorithm to integrate with STO. (Supported)

We run the same set of concurrent queues from the previous hypothesis on the

Multi-Thread Singletons Test, which provides a more realistic example of

high-contention workloads that a queue may experience. We investigate how

different concurrent, non-transactional algorithms perform in high-contention

situations compared to the transactional T-QueueP, and look for the most scalable

and performant concurrenct queue that outperforms T-QueueP to integrate with

STO. Selected results are shown in Figure 3.4.5.

As the number of threads increases above 2, NT-FCQueue achieves
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performance over 2.5× greater than any other concurrent, non-transactional queue.

The Multi-Thread Singletons Test highlights the performance benefits of the flat

combining queue: as contention increases, the flat combining queue reaches

performance approximately double that of T-QueueP. In addition, the flat

combining queue is the only queue that scales. All the other concurrent algorithms

perform worse than T-QueueP, regardless of the number of threads accessing the

queue or the initial queue size. Although an increase in the duration of a transaction

and number of operations per transaction would cause T-QueueP to perform far

worse than other concurrent queues, our results demonstrate that a simple

synchronization algorithm can achieve equal performance to more complex

synchronization algorithms even in some highly contentious scenarios.4

A comparison with NT-FCQueue indicates that the simple synchronization

algorithms used by T-QueueO and T-QueueP are certainly not optimal for

performance in a non-transactional setting. Given these results, as well as the

algorithmic benefits of the flat combining technique described in Section 3.3.1, we

choose the flat combining queue to integrate with STO.

SUPPORTED: NT-FCQueue significantly outperforms all concurrent, non-

transactional queues and T-QueueP on the Multi-Thread Singletons Test, indicating

that flat combining may be the most promising algorithm to integrate with STO to

create a more performant and scalable transactional queue.

4We rely on the specific libcds [25] implementation of these concurrent, non-transactional data
structures, which may not be the most optimized versions of these data structures. However, the
performance of these implementations on our tests matches their performance in other research
evaluating these data structures [29, 31].
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Sto::start_transaction();
try {

do_queue_op(push, 1);
do_queue_op(pop, NULL);
if (Sto::try_commit()) {

printf("committed");
}

} catch (Transaction::Abort e) {
printf("aborted");

}

Figure 3.4.6: Example usage of STO wrapper calls

3.4.6 Hypothesis 4

Overhead from general STO bookkeeping does not cripple performance

of a highly-concurrent queue algorithm. (Supported)

We create a version of NT-FCQueue, called NT-FCQueueWrapped, that invokes

general STO bookkeeping calls. The relative performance of NT-FCQueueWrapped

to NT-FCQueue indicates how much of the overhead added by the STO system is

unavoidable (without modifying STO itself).

The STO wrapper functions called by NT-FCQueueWrapped must be called by

any user of the data structure in order for the data structure to perform the

necessary bookkeeping to support transactions. These two calls are

start_transaction and try_commit, and allow a user to mark which operations

should occur together in the same transaction. An example of how these calls are

used is shown in Figure 3.4.6. After invoking the start_transaction call, the

thread is able to track items in its read or write sets. At the end of a transaction,

the thread invokes the try_commit call to run the commit protocol.

NT-FCQueueWrapped adds no items to the read or write sets after invoking
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Figure 3.4.7: NT-FCQueue vs. NT-FCQueueWrapped Performance: Multi-
Thread Singletons Test

start_transaction and does nothing in its commit protocol. This means that

NT-FCQueueWrapped incurs the minimum amount of overhead necessary to use

STO, and therefore represents the upper bound on the performance we can expect

from a fully transactional flat combining queue (T-FCQueue).

We see from our Multi-Thread Singletons Test results (Figure 3.4.7) that the

STO wrapper calls can lead to a performance loss ranging from 0% at 20 threads to

30% at 4 threads compared to the performance of NT-FCQueue. With fewer threads

accessing the queue, the proportion of overhead from the STO wrapper calls is

greater, because the overhead from synchronizing access to the queue is minimal. As

the number of threads increases, the overhead from STO wrapper calls becomes

negligible in comparison to the cost of synchronization. NT-FCQueueWrapped
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Figure 3.4.8: NT-FCQueue vs. NT-FCQueueWrapped Performance: Push-
Pop Test (2 threads)

retains most of NT-FCQueue’s scalability, and the two queues perform equally well

after the number of threads reaches approximately 14.

We also see an impact on performance of NT-FCQueue in the Push-Pop Test,

shown in Figure 3.4.8: performance drops by approximately 20%. The push-only

thread now beats the pop-only thread in NT-FCQueueWrapped, but the ratio of 94

pops per 100 pushes is still close to 1:1. The performance impact likely comes from

the overhead added by STO wrapper calls; this is expected, as we discussed before,

because this constant overhead affects performance more significantly at low thread

counts and low contention.

The comparison of NT-FCQueueWrapped and NT-FCQueue demonstrates that

the unavoidable overhead of STO becomes negligible at high thread counts. Even
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Queue Pops per 100 Pushes
T-QueueP 28

NT-FCQueueWrapped 94
T-FCQueue 57

Table 3.4.3: T-FCQueue Push-Pop Test: Ratio of pops to pushes when
the push-only and pop-only threads are executing simultaneously

with the wrapper calls, our results indicate it can still be possible to achieve

performance at 20 threads up to nearly 2× greater than that of T-QueueP (the

second-best performing queue).

SUPPORTED: Invoking the general STO wrapper functions that are necessary

for any data structure to support transactions does not cripple the performance of

highly-concurrent queues such as NT-FCQueue, particularly at high thread counts.

3.4.7 Hypothesis 5

A transactional flat combining queue outperforms and scales better than

a transactional queue with a naive concurrent algorithm. (Not

Supported)

We compare T-FCQueue against NT-FCQueueWrapped and T-QueueP to measure

how the flat combining transactional approach described in Section 3.3.2 performs.

In the Push-Pop Test (Figure 3.4.9), T-QueueP outperforms both flat

combining variants. This is an unsurprising result given our results from the

concurrent queues benchmark in Figure 3.4.4, and the fact that T-FCQueue has a

more equal ratio of pops to pushes than does T-QueueP (Table 3.4.3).

The Multi-Thread Singletons Test (Figure 3.4.10) shows that T-QueueP

performs approximately 2× better than T-FCQueue, regardless of initial queue size.

Both queues do not scale, and the performance ratio remains constant regardless of
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Figure 3.4.9: T-FCQueue Performance: Push-Pop Test (2 threads)

Figure 3.4.10: T-FCQueue Performance: Multi-Thread Singletons Test
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the number of threads. T-FCQueue also experiences abort rates around 5%, which

are 1.5–2× the abort rates of T-QueueP.

NOT SUPPORTED: The transactional flat combining queue does not outperform

or scale better than other transactional queues using naive synchronization mecha-

nisms. T-FCQueue’s poor performance compared to that of T-QueueP demonstrates

that the flat combining algorithm performs poorly when modified to support trans-

actions.

3.4.8 Conclusion

Analysis with the perf tool indicates that the majority of T-FCQueue’s overhead

comes from spinning on the flat combining lock (acquired by the combiner thread),

or waiting for a flat combining call to complete. In addition, the number of cache

misses is over 4× greater than that of NT-FCQueue (see Appendix A.1). This

overhead occurs for two reasons:

1. Higher Quantity: As described in Section 3.3.2, a thread must make multiple

flat combining calls to perform a pop within a transaction (recall that a push

only requires one flat combining call).

2. Higher Complexity: Existing flat combining calls need to be made more

complex to support transactions (for example, installing a list of values per

push rather than a single value).

We conclude that the flat combining technique, while perhaps near-optimal for

a concurrent, non-transactional queue, is no better in a transactional setting than a

naive synchronization technique such as that used in T-QueueO and T-QueueP. The

flat combining algorithm must track the state of the queue during a transaction’s

lifetime to provide transactional guarantees (e.g., marking values in the queue, or

observing that the queue was empty when performing a pop). To do so requires
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both adding new flat combining calls and increasing the complexity of existing ones;

these modifications cripple flat combining’s performance. In the next chapter, we

formalize this argument using commutativity, and claim that the flat combining

technique fundamentally depends on operation commutativity that is present in

only a non-transactional setting in order to achieve its high performance.
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4
Commutativity and Scalability of Queue

Specifications

This chapter describes the commutativity of our queue operations in both a

non-transactional setting and a transactional setting, and relates the amount of

queue operation commutativity to queue implementation performance. For clarity,

we refer to the queue operation interface shown in Figure 3.2.1 as the strong queue

specification; a transactional queue with this interface is the strong transactional

queue. We hypothesize that the strong queue specification cannot be implemented in
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a transactional setting in an efficient way due to the lack of operation

commutativity in the strong queue specification. We follow this by proposing an

alternative queue specification—the weak queue specification—that allows for

greater operation commutativity, and hypothesize that this alternative specification

will allow for greater transactional queue scalability.

As a supporting example of our hypotheses, we examine the flat combining

technique in detail, and argue that the flat combining technique cannot implement

the strong queue interface efficiently in a transactional setting. While the

flat-combining technique is perhaps near-optimal for a concurrent, non-transactional

queue, it performs no better than a naive synchronization technique in a

transactional queue. This is because the flat combining algorithm’s high

performance comes from exploiting the greater operation commutativity present in

a non-transactional setting. The flat combining algorithm’s optimizations must be

heavily modified in order to support transactions, which leads to significant

performance loss.

We then implement a weak transactional flat combining queue—a flat

combining queue with operations satisfying the weak queue specification—with the

expectation that the flat combining technique can achieve scalable performance close

to its performance in a non-transactional setting. Our experimental results illustrate

that the greater commutativity of operations in the weak queue specification is

essential for the flat combining technique to be effective in a transactional setting.

4.1 Histories

We introduce some terminology about histories and transactional histories that will

be used in our discussion of operation commutativity.
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Definition 1. A history is a sequence of (thread, operation, result) tuples

that represent an interleaving of operations of all threads. Knowledge of both the

history and initial conditions of a data structure leads to complete knowledge of the

(high-level) end state of the structure.

Example 1.
// Q.size() == 0
(T2, Q.push(a), ())
(T1, Q.pop(), true)
(T2, Q.push(a), ())
(T1, Q.pop(), true)
// Final State: Q.size() == 0

Definition 2. A transactional history is a specific type of history in which the

tuples represent an interleaving of operations of the threads’ committed

transactions. A transactional history includes (thread, START_TXN, ()) and

(thread, COMMIT_TXN, commit_result) operation tuples that represent the time

the thread starts and commits the transaction. commit_result represents the

observable effects of the installation procedure at commit time.

Example 2.
// Q.size() == 0
(T1, START_TXN, ())
(T2, START_TXN, ())
(T2, Q.push(a), ())
(T1, Q.pop(), true)
(T2, Q.push(a), ())
(T1, Q.pop(), true)
(T1, COMMIT_TXN, ())
(T2, COMMIT_TXN, ())
// Final State: Q.size() == 0

Definition 3. A history H ′ is consistent with H if:

1. H ′ contains the same tuples as H: the same operations were executed with the

same return values for all operations within the transactions.
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2. The order of a single thread’s calls in H ′ remains consistent with the thread’s

order of calls in H.

Definition 4. A transactional history H is serial if all tuples are grouped by

transaction: if i ≤ j ≤ k and Hi and Hk are from the same transaction, then Hj is

also from that transaction. This means the tuples form a serial transaction order.

Definition 5. A transactional history H is serializable if there exists a serial

history H ′ s.t. H ′ is consistent with H.

Example 3. H is a serializable transactional history whose corresponding serial

execution is H ′. H ′′ represents a serial transactional history, but is inconsistent with

H because its pop operations return different results.

H H’ H”
// Q.size() == 0
(T1, START_TXN, ())
(T2, START_TXN, ())
(T2, Q.push(a), ())
(T1, Q.pop(), true)
(T2, Q.push(a), ())
(T1, Q.pop(), true)
(T1, COMMIT_TXN, ())
(T2, COMMIT_TXN, ())

// Q.size() == 0
(T2, START_TXN)
(T2, Q.push(a), ())
(T2, Q.push(a), ())
(T2, COMMIT_TXN)
(T1, START_TXN)
(T1, Q.pop(), true)
(T1, Q.pop(), true)
(T1, COMMIT_TXN)

// Q.size() == 0
(T1, START_TXN)
(T1, Q.pop(), false)
(T1, Q.pop(), false)
(T1, COMMIT_TXN)
(T2, START_TXN)
(T2, Q.push(a), ())
(T2, Q.push(a), ())
(T2, COMMIT_TXN)

Definition 6. A transactional history is linearizable if all transactions appears to

occur instantaneously between their start time and their commit time: if transaction

T1 commits before transaction T2 begins, then T1 must appear before T2 in the

serial history [14].

Definition 7. A transactional history H is strictly serializable, or valid, if it is both

serializable and linearizable. Any data structure implemented in a transactional

setting requires strictly serializable transactional histories.

59



Example 4. H is a serializable, but not linearizable, transactional history. This is

because T2 should have observed the pushes committed by T1. We can find a serial

ordering of H, shown in H ′, but H ′ violates the rule that the serial order of

transactions corresponds to the real time order of the transactions’ commits.

H H’
// Q empty
(T1, START_TXN)
(T1, Q.push(a), ())
(T1, Q.push(a), ())
(T1, Q.pop(), true)
(T1, COMMIT_TXN)
(T2, START_TXN)
(T2, Q.pop(), false)
(T2, COMMIT_TXN)

// Q empty
(T2, START_TXN)
(T2, Q.pop(), false)
(T2, COMMIT_TXN)
(T1, START_TXN)
(T1, Q.push(a), ())
(T1, Q.push(a), ())
(T1, Q.pop(), true)
(T1, COMMIT_TXN)

4.2 The Scalable Commutativity Rule

The scalable commutativity rule, formally defined by Clements et al. [6], asserts that

whenever interface operations commute, there exists an implementation of the

interface that scales. Operations commute in a particular interface when there is no

way to distinguish their execution order: exchanging the order of the operations in

the history does not modify the return values of the operations seen by each thread,

and no possible future sequence of operations can distinguish the two orders. In the

following discussion, we use the scalable commutativity rule to argue for the

presence (or lack) of scalable implementations of operation interfaces in

non-transactional and transactional settings.
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4.3 Commutativity of the Strong Queue

Specification

In a non-transactional setting, we consider histories in which the only operations are

push and pop (i.e., the histories are not transactional). Given the strong queue

specification (Figure 3.2.1), in which push returns void and pop returns bool, we

determine the commutativity of these operations by examining the effects of

exchanging the order in which the operations appear in the history. Two operations

do not commute if exchanging the operation’s order changes either (a) the

operations’ return values, or (b) the resulting global state (if the resulting state is

the same in both orders, then no future operation sequences can distinguish the

orders). We show operations that do not commute in Table 4.3.1.

Based on this commutativity analysis, we note that a pop operation does not

commute with a push operation when the queue is empty, and it does not commute

with another pop operation when the queue is near empty. By the scalable

commutativity rule, this means that there is no concurrent queue implementation

for pop that scales in these particular scenarios. A push operation commutes with

all operations because it returns void, and has a scalable implementation in all

scenarios.

In practice, the pop operation is rarely used without an accompanying call to

the front operation immediately prior to the pop. This is because a user of the

queue will not only want to know if removing a value from the queue succeeded, but

also want to know the contents of the popped value. If every pop is immediately

preceded by a front operation, we note that a front-pop operation pair will never

commute in any scenario, even when the queue is empty. This is because a front-pop

will return the contents of the value at the head of the queue, and the same value
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Operations H H’

push vs. pop
// Q empty
(T, Q.push(a), ())
(T, Q.pop(), true)

// Q empty
(T, Q.pop(), false)
(T, Q.push(a), ())

pop vs. pop
// Q.size() = 1
(T1, Q.pop(), true)
(T2, Q.pop(), false)

// Q.size() = 1
(T2, Q.pop(), true)
(T1, Q.pop(), false)

Table 4.3.1: Strong queue operations that do not commute. H is the
original history; H’ is the history with the order of the two operations ex-
changed. In the push vs pop scenario, note that any thread may have per-
formed the operations, and the operations will still not commute.

cannot be popped off the queue twice. To simplify our commutativity and queue

algorithms discussions, we omit the front operation; however, it is important to note

that omitting the front operation has the side effect of deceiving us into believing

that a pop commutes in more scenarios that it does in practice.

We reason about commutativity of a queue implemented in a transactional

setting using transactional histories, which include START_TXN and COMMIT_TXN

operations. A transactional setting calls for strict serializability of the transactional

history, which by definition entails serializability (i.e., that tuples in histories be

grouped by transaction). This adds an additional level of commutativity, namely

commutativity between transactions.

Because a valid transactional history is strictly serializable, we can find a

corresponding serial history for every valid transactional history. This means that

operations belonging to the same transaction must occur in a group in the history.

To reason about transaction commutativity, we have a parallel notion to exchanging

operations in the history: we exchange groups of operations in a START_TXN and

COMMIT_TXN block of a serial history, and detect whether there is any observable

change in either the return values within the exchanged transactions, or the

62



resulting global state. We note that the occurrence of each transaction in the serial

transactional history can be uniquely identified by its COMMIT_TXN tuple. Thus, if

exchanging the positions of two transactions does not commute in a particular

scenario, we can say that the two COMMIT_TXN operations do not commute in that

scenario.

In a transactional setting, we determine the commutativity of the queue

specification by considering both individual operation commutativity and

transaction commutativity. Note that when transactions contain only one operation,

then a lack of commutativity between two transactions is equivalent to saying that

that the two operations do not commute (and vice versa). In general, two

transactions—i.e., two COMMIT_TXN operations—do not commute if (a) a pop

operation in one transaction observes an empty queue given one ordering of the

transactions, but not the other; and/or (b) the resulting size of the queue

immediately after both transactions have committed changes when the order of the

transactions changes. We provide some examples of larger transactions that fail to

commute in Table 4.3.2.

Based on this commutativity analysis, we note that, in addition to the

non-commutativity of pop operations in particular scenarios involving empty, or

near-empty queues, we now have a further lack of commutativity of transactions

(identified by their COMMIT_TXN operations), even in scenarios in which the queue

may contain far more than one value. For example, even the queue is relatively full,

a large transaction performing several pops may reduce the queue to a near-empty

state, and one of its pop operations may observe the empty status of the queue.

This transaction will then not commute with any other transaction performing a

push or pop. By the scalable commutativity rule, this means that there is no
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Example H H’

1.

// Q empty
(T1, START_TXN, ())
(T1, Q.pop(), false)
(T1, Q.push(a), ())
(T1, COMMIT_TXN, ())
(T2, START_TXN, ())
(T2, Q.pop(), true)
(T2, COMMIT_TXN, ())

// Q empty
(T2, START_TXN, ())
(T2, Q.pop(), false)
(T2, COMMIT_TXN, ())
(T1, START_TXN, ())
(T1, Q.pop(), false)
(T1, Q.push(a), ())
(T1, COMMIT_TXN, ())

2.

// Q empty
(T1, START_TXN, ())
(T1, Q.push(a), ())
(T1, Q.pop(), true)
(T1, Q.push(a), ())
(T1, COMMIT_TXN, ())
(T2, START_TXN, ())
(T2, Q.pop(), (true))
(T2, Q.push(a), ())
(T2, COMMIT_TXN, ())

// Q empty
(T2, START_TXN, ())
(T2, Q.pop(), (false))
(T2, Q.push(a), ())
(T2, COMMIT_TXN, ())
(T1, START_TXN, ())
(T1, Q.push(a), ())
(T1, Q.pop(), true)
(T1, Q.push(a), ())
(T1, COMMIT_TXN, ())

Table 4.3.2: Examples of strong queue transactions that do not commute.
For clarity, we show only the serial history corresponding to the original
valid transactional history. H is the original serial history; H’ is the history
with the order of the two transactions exchanged.

scalable queue implementation for a strong transactional queue whenever

COMMIT_TXN operations do not commute.

We hypothesize that any transactional implementation of our strong queue

specification that must handle scenarios in which queues may become empty will

not scale. A concurrent queue already lacks a scalable implementation for pop due

to the high likelihood that a pop operation will not commute with any other

operation when the queue nears empty. When this queue is put in a transactional

setting, there is an even higher likelihood that two transactions will not commute,

even if the queue contains more values.1 This prevents an efficient, scalable

1Furthermore, a front-pop will never commute with another operation, even in a non-empty
queue; every transaction containing a front-pop will not commute with another transaction contain-
ing a front-pop.
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implementation of a strong transactional queue. In Section 4.4, we provide a

counterexample, a transactional queue satisfying the weak queue specification, and

demonstrate how increased commutativity in this new specification allows for a

scalable implementation.

4.3.1 The Strong Transactional Flat Combining Queue

The flat combining algorithm is an example of a queue algorithm that implements

the strong queue interface and loses its effectiveness in a transactional setting.

Recall that our results from testing Hypothesis 5 demonstrate that flat combining’s

effectiveness is lost in a transactional setting. Here, we argue that this is due to a

decrease in the amount of commutativity in the transactional setting: in addition to

non-commutative single operations (pops and pushes), transactions may not always

commute.

Flat combining’s fundamental principle is that requests posted to the

publication list can be blindly applied to the queue in an arbitrary order. It handles

non-commutativity on the level of individual pop operations by synchronizing

concurrent access to the queue with the combiner thread: only one thread at a time

is allowed to perform an operation on the queue.2 In a strong transactional queue,

the flat combining algorithm must also correctly handle transactions that may not

commute, which means synchronizing the COMMIT_TXN operations of different

transactions. This requires that the algorithm prevent operations within

transactions from interleaving in the transactional history in ways that prevent the

transactional history from being serialized. In other words, the order in which

2We note that flat combining is not a scalable implementation of pop (or push): the combiner
thread’s application of requests can only be as efficient as a sequential execution of all thread
operations. As our results from testing Hypothesis 3 show, flat combining is nonetheless the most
efficient of all concurrent queue algorithms evaluated.
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Interleaving

1.
(T1, Q.pop(), true/false)
(T2, Q.pop(), true/false)
(T1, Q.pop(), true/false)

2.
// Q.size() == 1
(T1, Q.pop(), true) // Q empty
(T2, Q.push(a), ())
(T1, Q.pop(), true)

3.
// Q.size() == 1
(T1, Q.pop(), true) // Q empty
(T2, Q.pop(), false)
(T1, Q.push(a), ())

4.
(T1, Q.push(a), ())
(T2, Q.push(a), ())
(T1, Q.push(a), ())

5.
// Q.size() == 0
(T1, Q.push(a), ())
(T2, Q.pop(), true) // Q empty
(T1, Q.pop(), false)

Table 4.3.3: Invalid operation interleavings in transactional histories.

operations are applied becomes important.

We show all invalid interleavings of operations that will violate transactional

guarantees (i.e., cause histories to be non-strictly serializable) in Table 4.3.3.3 We

describe several methods to prevent these interleavings, and argue that these

methods cannot be integrated with the flat combining algorithm without introducing

overhead that reduces its performance to below that of T-QueueO or T-QueueP.

Each of these methods adds complexity to the push and pop flat combining calls,

and creates new flat combining calls to check, undo, or install at commit time.

A standard method for a transactional queue push is to delay the push

3We derive these interleavings using Schwarz’s method [35]. Schwarz reasons about invalid his-
tories using dependencies. All operations performed by a transaction can be thought of in terms
of reads and writes, and these operations create read-write, write-write, etc. dependency edges be-
tween two transactions. Schwarz asserts that invalid histories must necessarily include cycles in the
dependency graph consisting of some number of read-write, write-read, or write-write edges.
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execution until commit time. This is allowable because a push observes none of the

queue state, and therefore has no effect at execution time. Delaying all pushes until

commit time prevents interleavings 4 and 5. These interleavings can occur only if

T1’s first push is visible to T2 prior to T1’s commit. If we delay pushes until

commit time, T2 will not detect the presence of a pushed value in the queue.

Because pop operations immediately return values that depend on the state of

the queue (false if the queue is empty, or true if the queue is nonempty),

interleavings 1, 2, and 3 cannot be prevented by delaying pop operations until

commit time. Instead, we can take one of two approaches. Let T1 be a transaction

that has performed a pop.

1. Optimistic: Abort T1 at commit time if T2 has committed an operation that

would cause an invalid interleaving.

2. Pessimistic: Prevent T2 from committing any operation until after T1

commits or aborts.

T-QueueO implements the optimistic method: at commit time, checks of the

tail version and the head version determine whether the empty status of the queue

has been modified by another, already committed transaction. T-QueueP

implements the pessimistic approach, which locks the queue after a pop is

performed, and only releases the lock if the transaction commits or aborts, therefore

preventing any other transaction from committing any operation after the pop.

The flat combining approach can do either approach (1) or (2) to support

transactions; however, the flat combining approach cannot do either without

introducing overhead that reduces its performance to below that of T-QueueO or

T-QueueP.

If we take approach (1), a pop cannot be performed at execution time because

no locks on the queue are acquired at execution time: other transactions are allowed
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to commit pops, which may pop an invalid head if this transaction aborts. Thus, in

order to determine if a pop should return true or return false, a transactional pop

request requires much more complexity than a non-transactional one: the thread

must determine how many values the queue holds, how many values the current

transaction is intending to pop, and if any other thread intends to pop (in which

case the transaction aborts). The transactional push request is also more complex,

as it requires installing all the pushes of the transaction. Additional flat combining

calls are necessary to allow a thread to perform checks of the queue’s empty status

(the <EMPTY?> flat combining call) to determine whether the transaction can

commit or must abort, and to actually execute the pops at commit time. Thus,

approach (1) requires adding both more flat combining calls and more complexity to

the existing flat combining calls.

If we take approach (2), the flat combining approach can either perform a pop

at execution time, or delay the pop until commit time. If a pop is performed at

execution time, then a thread must acquire a global lock on the queue when it calls

a pop, and hold the lock until after its transaction completes: this prevents another

thread from observing an inconsistent state of the queue. If a pop removes the head

of the queue prior to commit, and the transaction later aborts, the popped value

must be re-attached to the head of the queue. Any thread performing a pop must

acquire a global lock to ensure that no other thread can commit a transaction that

pops off the incorrect head of the queue (given that values may be reattached to the

head if the transaction aborts). Additional flat combining calls are necessary to

acquire or release the global lock.

We can also imagine a mix of approaches (1) and (2). If a transaction T1

executes a pop, we can disallow any pops from other transactions (using the

equivalent of a global lock) but allow other transactions containing only pushes to
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commit prior to T1 completing. This approach prevents interleavings 1 and 3, but

requires performing a check of the queue’s empty status, as in approach (1), if one of

the transaction’s pops observed an empty queue. This is because another transaction

may have committed a push between the time of T1’s pop and T1’s completion.

This mixed approach outperforms both approach (2) and approach (1), and is the

approach described as the transactional flat combining algorithm in Section 3.3.2.

As previously noted, all possible approaches to prevent interleavings 1, 2, and 3

rely on implementing additional flat combining calls, and increasing the complexity

of previously existing flat combining calls. In addition, acquisition of a global “lock”

on the queue for approach (2) prevents the combiner thread from applying all of the

requests it sees; instead, requests will either return “abort” to the calling thread or

not be applied, leading to additional time spent spinning or repeating requests.

Together, these modifications to the flat combining algorithm allow the combiner

thread to prevent all invalid transactional history interleavings in Table 4.3.3.

We see through our experiments that these changes to the flat combining

algorithm reduce its performance such that it performs worse than a naive

synchronization algorithm; furthermore, we claim that these changes, or changes

similar in nature, are necessary in order to provide transactional guarantees. The

non-transactional, flat combining algorithm does not need to synchronize

transactions, and any interleaving of operations in the history is allowed, so long as

the operations return the correct results given their place in the history. The

combiner thread in a non-transactional flat combining queue is therefore allowed to

immediately apply all threads’ operation requests in an arbitrary order. However,

this property that makes flat combining so performant disappears as soon as the

algorithm has to deal with transactions that do not commute, and handle invalid,

non-serializable histories. In the next section, we demonstrate how changing the
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queue specification to allow for greater operation commutativity in a transactional

setting leads to a version of flat combining that can outperform our T-QueueO and

T-QueueP algorithms. This supports our claim that the flat combining algorithm’s

performance is heavily dependent on the commutativity of the particular queue

specification in a transactional setting.

4.4 Commutativity of the Weak Queue

Specification

To demonstrate how the strong queue interface, and the corresponding

commutativity of transactions, prevents a scalable transactional queue

implementation, we create a different queue operation interface—a weak queue

specification. This weak specification increases commutativity of operations and

transactions, and does allow for a scalable transactional queue implementation. This

interface is shown in Figure 4.4.1, and differs from the strong queue specification

because a pop operation returns a future<bool> instead of bool. A future<bool>

has the property that the value of the future (a boolean) is only available after the

operation completes (in a non-transactional setting), or after the containing

transaction commits (in a transactional setting). This interface for pop does not

change the behavior or guarantees of a non-transactional, strong queue pop

described in Section 3.1.

In a transactional setting, however, these pop operations must satisfy both the

invariants of a concurrent queue, as well as the invariant that, at commit time, two

consecutive pops in the same transaction remove consecutive values off the queue

(but perhaps not from the head of the queue). Furthermore, the pop operations
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void push(const value_type& v);
future<bool> pop();

Figure 4.4.1: Weak Queue Operations Interface

cannot pop the values that were pushed within the same transaction. The invariants

for a push remain the same (two pushes in the same transaction must appear

consecutively in the queue). The weak queue retains all the fairness properties of a

concurrent queue: no value remains in the queue forever, because values are still

removed in the order in which they are added. Like Schwarz [35], we see uses for the

weak transactional queue as a buffer between producer and consumer activities, in

which the exact ordering of values in the buffer is unimportant, and a transaction

does not need to know exactly how many values were actually popped. Examples of

valid weak queue transactional histories are shown in Table 4.4.1.

A weak transactional queue has greater commutativity than a strong

transactional one. Individual pop operations within a transaction now commute

with any operation, because they all return future<bool> when called. COMMIT_TXN

operations, however, now return a list of bool values (one for each pop operation

within the transaction). Thus, instead of having to synchronize both individual pop

operations and COMMIT_TXN operations of transactions (as the strong transactional

queue must), the weak transactional queue only needs to synchronize the

COMMIT_TXN operations. This is because only COMMIT_TXN operations have return

values that can change based on the ordering of operations in the history, and only

COMMIT_TXN operations fail to commute. Informally, we can think of moving from

the strong to the weak queue specification as condensing all individual strong pop

operations into one operation: the COMMIT_TXN operation. The non-commutativity of

all individual strong pop operations is now “contained” by the COMMIT_TXN
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operation.4

We claim that synchronizing these COMMIT_TXN operations is no more difficult

than synchronizing strong queue pops in a non-transactional setting. We use the

same commutativity reasoning we used to reason about commutativity between

individual strong pops and pushes to reason about commutativity between weak

COMMIT_TXN operations. A weak COMMIT_TXN operation can be described as a pair of

a pop-group operation and a push-group operation: in order to satisfy our

specification, all pops of the transaction need to be installed together at commit

time, and all pushes of the transaction need to be installed together at commit time.

It is clear that a pop-group that encounters an empty queue will not commute with

another pop-group or another a push-group; thus, we see that a pop-group has

equivalent commutativity behavior to a strong pop, and a push-group has

equivalent commutativity behavior to a strong push. Indeed, performing a weak

COMMIT_TXN operation, like performing a strong pop operation, requires protected

access to the queue’s head, and does not scale.

To further support our point, we implement a weak transactional flat

combining queue, and demonstrate that flat combining’s synchronization mechanism

for a strong, non-transactional pop can be used by this weak transactional queue

with minimal modifications.

4Again, we can consider adding front operations to create front-pop operations (a pop operation
immediately preceded by a front operation). A weak front-pop returns a future representing the
contents of the front and the return value of the pop, which is instantiated at commit time. Given
this specification, all weak front-pops commute (because they all return futures), but COMMIT_TXN
operations fail to commute in precisely those scenarios in which strong front-pops fail to commute.
Thus, moving from the strong queue specification to the weak queue specification is equivalent to
condensing of all strong front-pop operations into one operation, the COMMIT_TXN operation.
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Valid History Interleaving Serialized Forms of History

// Q empty
(T1, START_TXN, ())
(T2, START_TXN, ())
(T2, Q.pop(), ())
(T1, Q.pop(), ())
(T1, Q.push(a), ())
(T1, Q.push(a), ())
(T1, COMMIT_TXN, {false})
(T2, COMMIT_TXN, {true/false})

// Q empty
(T1, START_TXN, ())
(T1, Q.pop(), ())
(T1, Q.push(a), ())
(T1, Q.push(a), ())
(T1, COMMIT_TXN, {false})
(T2, START_TXN, ())
(T2, Q.pop(), ())
(T2, COMMIT_TXN, {true})
------------------------------

// Q empty
(T2, START_TXN, ())
(T2, Q.pop(), ())
(T2, COMMIT_TXN, {false})
(T1, START_TXN, ())
(T1, Q.pop(), ())
(T1, Q.push(a), ())
(T1, Q.push(a), ())
(T1, COMMIT_TXN, {false})

// Q empty
(T1, START_TXN, ())
(T2, START_TXN, ())
(T1, Q.push(a), ())
(T1, Q.pop(), ())
(T1, Q.pop(), ())
(T2, Q.pop(), ())
(T1, Q.push(a), ())
(T1, COMMIT_TXN, {false, false})
(T2, COMMIT_TXN, {true/false})

// Q empty
(T1, START_TXN, ())
(T1, Q.push(a), ())
(T1, Q.pop(), ())
(T1, Q.pop(), ())
(T1, Q.push(a), ())
(T1, COMMIT_TXN, {false, false})
(T2, START_TXN, ())
(T2, Q.pop(), ())
(T2, COMMIT_TXN, {true})
------------------------------

// Q empty
(T2, START_TXN, ())
(T2, Q.pop(), ())
(T2, COMMIT_TXN, {false})
(T1, START_TXN, ())
(T1, Q.push(a), ())
(T1, Q.pop(), ())
(T1, Q.pop(), ())
(T1, Q.push(a), ())
(T1, COMMIT_TXN, {true, false})

Table 4.4.1: Examples of valid weak queue transaction histories. The his-
tory interleavings shown on the left are valid regardless of whether T2 re-
turns true or false, because we can find a serialized form of the history
in either case. 73



4.4.1 The Weak Transactional Flat Combining Queue

The Weak Transactional Flat Combining Queue (WT-FCQueue) demonstrates how

the flat combining technique’s performance depends upon the commutativity of

operations of a particular queue specification, and how this commutativity changes

in a transactional setting. It also supports our claim that the commutativity in a

weak transactional queue is equivalent to the commutativity in a strong

non-transactional queue.

WT-FCQueue implements the weak transactional queue specification using

futures: instead of returning bool, a pop will return a future. The future will be

instantiated with a true or false boolean value at commit time, but prior to that

time, the future’s value cannot be accessed. At commit time, our implementation

performs a pop using the non-transactional flat combining <POP> request, and

assigns the corresponding boolean return value to the corresponding future. All

pushes from the transaction are also installed at commit time using the <PUSH,

write_list> request described earlier. We note that both pop and push requests do

not need to access the queue during execution time. This allows us to minimize the

number of flat combining calls: we do not need to generate additional flat combining

calls during transaction execution because the queue does not need to be accessed

until commit time.

Our implementation satisfies a weaker specification than the weak queue

specification described above: in our implementation, pops are not guaranteed to be

consecutive. However, we hypothesize that a queue that installs all pops at

once—by posting, at commit time, a <POP, num_pops> request that returns a list of

booleans—will perform no worse than our current method of pops (or may perhaps

even perform better). This is because the synchronization is still restricted to the
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Figure 4.4.2: WT-FCQueue Performance: Multi-Thread Singletons Test

point at which the COMMIT_TXN operations occur in the history, and in both our

actual and proposed implementations, only a single thread can access the queue at

this point.

4.4.2 Evaluation and Results

We evaluate the weak transactional flat-combining queue on the same benchmarks

described in Section 3.4.1 to compare against the strong transactional

flat-combining queue (T-FCQueue), T-QueueP, and NT-FCQueueWrapped.

Selected results are shown in Figure 4.4.2.

While WT-FCQueue does not perform as well as its non-transactional

counterpart, NT-FCQueue, the performance of WT-FCQueue exceeds that of

T-QueueO, T-QueueP, and T-FCQueue, which all provide transactional guarantees
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under the strong queue specification. We see gains in performance over T-QueueP

up to 1.5× as the number of threads accessing the queue increases to 20;

WT-FCQueue begins to outperform T-QueueP as the number of threads increases

past 7. WT-FCQueue outperforms T-FCQueue starting at 4 threads and achieves

performance up to about 5× by 20 threads.

WT-FCQueue does not experience any aborts. This is because the weak

transactional flat combining algorithm never needs to prevent other threads’

requests from being performed by the combiner thread. Because of the lack of

aborts, WT-FCQueue significantly outperforms T-FCQueue; this demonstrates the

effectiveness of the flat combining technique in the weak transactional setting.

Our results show significant improvements in the performance of the flat

combining algorithm when satisfying the weak transactional queue specification,

compared to its performance when satisfying the strong transactional specification.

This demonstrates that the choice of queue specification, and therefore the

commutativity of queue operations, directly affects the effectiveness of the flat

combining algorithm in a transactional setting. We argue that the modifications to

provide transactional guarantees with our strong queue specification critically

impair the performance of the flat combining algorithm, and that these

modifications cannot be avoided. Thus, scalable performance of a strong flat

combining queue is unlikely to be achievable in a transactional setting.
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5
Hashmap Algorithms and Analysis

This chapter investigates different concurrent and transactional algorithms for

hashmaps, and demonstrates how a concurrent hashmap algorithm—cuckoo

hashing—can retain the benefits from its performance optimizations even in a

transactional setting. We begin with an overview of concurrent and transactional

hashmap algorithms, and evaluate how these hashmaps perform on several

microbenchmarks. By examining the commutativity of hashmap operations and

hashmap transactions, we discuss why and how a transactional cuckoo hashing

algorithm, unlike the flat combining algorithm, retains the scalability and
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// find searches for key k, storing the
// associated value it finds in v
// succeeds only if the key is in the map
bool find(const key_type& k, mapped_type& v);

// insert adds the key-value pair (k, v) to the map
// succeeds only if the key is not already in the map
bool insert(const key_type& k, const mapped_type& v);

// erase removes the element corresponding to k from the map
// succeeds only if the key is in the map
bool erase(const key_type& k);

Figure 5.1.1: Hashmap Operations Interface

characteristic behaviors of non-transactional cuckoo hashing.

5.1 Algorithms

STO provides transactional hashmaps that support find, insert, and erase operations

with the interface shown in Figure 5.1.1. This section presents the concurrent and

transactional hashmap algorithms we implemented and analyzed in our work. We

will use some general terminology: an element refers to the key-value pair inserted

into the hashmap, a bucket is a set of elements, and a hashmap consists of a set of

buckets. Various hashmap algorithms use various methods to place elements in

buckets and track how buckets and elements are modified. Figure 5.1.2 depicts the

bucket structures of the various hashmaps described in this section.
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Figure 5.1.2: This figure depicts two buckets in each type of hashmap.
The static size of a bucket in each cuckoo hashmap is set to 3. Arrows
represent pointers to allocated elements; contiguous memory is represented
horizontally.
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5.1.1 Transactional Chaining Hashmap

The transactional chaining hashmap is a concurrent, transactional hashmap

implemented using a standard chaining algorithm. If two elements are mapped to

the same bucket, they are chained in a linked list, shown in Figure 5.1.2 (a). Thus,

the worst case time complexity for a lookup, insert, or erase is O(n). Inserts require

allocating an element corresponding to the key-value pair to insert into the bucket.

Each bucket is associated with a bucket version that increments when any

transaction commits an erase or insert of an element in the bucket. A thread uses the

bucket version to verify that no other thread has added an element that was absent

during one of its finds. In addition, the bucket version acts as a lock to synchronize

access to the bucket. Each inserted element is associated with an element version

that tracks if the value of the element has been modified or if the element has been

removed. Each element version is tied to the inserted element’s memory address.

Elements are inserted eagerly at execution time with a phantom flag, allowing

another transaction that sees one of these phantom, uninstalled elements to realize it

is viewing an inconsistent state of the map and abort. If a transaction that performs

an insertion later aborts, these phantom elements are removed from the map.

Otherwise, the phantom mark is erased during commit. An alternative approach

would be to insert all elements at commit time. However, this requires either relying

on the bucket version to determine if another transaction has inserted the same

element (which would result in false aborts since the bucket version increments for

any inserted value), or redoing the search for the element to see if the insertion can

still occur. Thus, we insert at execution time to allow for more fine-grained

validation checks at commit time, and to reduce redundant computations.

Erasures are delayed until commit time (an optimistic approach). The same
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logic that we used for inserts does not apply here. If we used the same procedure as

used by an insert, we would flag the bucket that contained the erased element to

indicate that a (still-executing) transaction performed an erase of an element in the

bucket. Any thread seeing the flag would know that the bucket is in an inconsistent

state, and would abort. However, this loses the per-element granularity of checks

and causes false aborts. Thus, erasing elements at execution time would decrease

the granularity of validation checks, rather than increase it (as was the case for

inserting elements). Delaying erasures until commit time requires careful handling of

read-my-writes scenarios, such as deleting an element inserted in the same

transaction.

5.1.2 Non-Transactional Cuckoo Hashmap

The Non-Transactional Cuckoo Hashmap (NT-Cuckoo) implements a concurrent,

non-transactional cuckoo hashing algorithm. We modify an implementation of a

dynamically-resizing, concurrent cuckoo hashmap [11] by simplifying several

procedures; the main difference is that our cuckoo hashmap is statically sized.

We choose the cuckoo hashing algorithm as a potential transactional algorithm

because the cuckoo hashing algorithm has several advantages over a chaining one.

For one, cuckoo hashmaps have been shown to outperform chaining hashmaps when

the hashmap can mostly fit in cache. Although cuckoo hashing has the disadvantage

of performing two memory accesses for a lookup (as described below), the overhead

from performing memory accesses is eliminated when the map can fit in cache.

Furthermore, modern processors can optimize these memory accesses to alleviate

some of the overhead [43]. Cuckoo hashmaps with large bucket sizes also outperform

chaining hashmaps at high loads (when the average number of elements per bucket
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is high) [34]. As we explain below, this is because the cost of a lookup is always

constant time, whereas a chaining hashmap may experience O(n) lookup time. In

addition, a lookup that encounters a long chain in a chaining hashmap will follow

O(n) pointers, whereas a lookup in a cuckoo hashmap will need to only access two

buckets, each of which is a contiguous array in memory.

In a concurrent setting, both cuckoo and chaining hashmaps must synchronize

access to buckets. Because the granularity of synchronization is no different for the

two algorithms, concurrent cuckoo hashing is still expected to outperform chaining

for the same reasons (better cache usage due to lack of pointers, and improved

asymptotic time complexity for all operations).

The cuckoo hashing algorithm works as follows: each element is placed in one of

two buckets; these buckets are determined by two different hash functions. A bucket

has a fixed number of elements it can hold. This means that lookups and erasures

only require executing two hash functions and checking the contents of two buckets

(an O(1) operation).

Inserts run in amortized O(1) time; the running time may occasionally be

O(n). If an element e is hashed by the first hash function to a bucket that is already

full, the algorithm attempts to place e in its alternate bucket by hashing e with the

second hash function. If both buckets are full, cuckoo shuffling occurs. This process

evicts an element e′ in one of e’s buckets and places e′ in e′’s alternate bucket. If e′’s

alternate bucket is full, an element e′′ is ejected from this bucket, and so on. As long

as the cuckoo shuffling does not encounter a bucket cycle, e can now be placed in

one of its buckets, as the removal of e′ has made space for e. However, if the

shuffling encounters a bucket cycle, the hashmap raises an out_of_space assertion

error. We can imagine an alternative implementation that allows the hashmap to

grow in number of buckets or otherwise change its hash functions (which requires
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reinserting all elements), but for simplicity, we keep the hashmap statically sized.

Because the buckets are statically sized, elements are contained in fixed-size

key and value arrays and therefore do not require extra allocations. The bucket

structure is shown in Figure 5.1.2 (b).

5.1.3 Transactional Cuckoo Hashmap

We hypothesize that, unlike the flat combining algorithm, the key optimizations of

the cuckoo hashing algorithm—better cache usage than a chaining hashmap when

the number of elements in each bucket is high, and constant time (or amortized

constant time) operations—are not crippled by integrating the algorithm into a

transactional setting. This is because the modifications necessary to support

transactions do not interfere with the optimizations taken by cuckoo hashing. We

investigate this further in our evaluation (Section 5.2) and hashmap commutativity

discussion (Section 5.3).

The transactional cuckoo hashmap comes in three flavors: two that allocate an

element per insertion, and one that does not perform any allocations. All cuckoo

hashmaps instrument the non-transactional cuckoo hashmap with STO calls that

provide transactional guarantees. Both allocating and non-allocating versions use

the same synchronization algorithm: like the chaining hashmap, each bucket has a

bucket version, and each element has an element version. A lock separate from the

bucket version is used to synchronize access to buckets for cuckoo shuffling. Because

elements can be moved into a bucket because of cuckoo shuffling as well as an

external insertion call, the bucket version increments only when an element not

already contained in the map is inserted into the bucket (i.e., elements inserted via a

call to insert and not via cuckoo shuffling). Elements are inserted at execution time
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with a phantom flag that is then erased at commit time, and erasures are delayed

until commit time.

The two variants of the allocating transactional cuckoo hashmap allocate

elements upon insertion. One variant (T-CuckooA) consists of buckets containing

pointers to the elements (Figure 5.1.2 (c)), allowing STO to track elements by their

memory address to verify element versions at commit time. The key-fragments

variant (T-CuckooKF) expands buckets to contain both an array of keys and an

array of element pointers (Figure 5.1.2 (d)). This allows for a lookup to compare

keys directly, because the keys are themselves contained in the bucket. Without the

key-fragments, the lookup would have to follow pointers contained in the bucket to

access and compare the key value. For many workloads, the key-fragments variant

reduces the number of cache line accesses. STO can still track elements by their

memory address in the element pointer array, but these pointers are only accessed if

the value of the element is needed. This only happens during a present lookup,

which accesses exactly one pointer, namely that of the searched-for element.

The non-allocating transactional cuckoo hashmap (T-CuckooNA) consists of

buckets containing a fixed-sized array of elements (Figure 5.1.2 (b)). In this variant

of the cuckoo hashmap, STO tracks elements by their keys rather than their

memory addresses. Therefore, to verify if an element version has changed at commit

time, the check procedure performs a find of the element using the key (searching at

most two buckets) and validates the corresponding element version. Although this

reduces the number of allocations, elements can now move between buckets and

invalidate the values in the previous bucket: this greatly complicates the process of

correctly checking and synchronizing element version reads. Our transactional

algorithm for this hashmap reflects this complexity: the tracking set size is not

minimal, and therefore we achieve more coarse-grained locking at commit time. For
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example, the non-allocating cuckoo hashmap locks both bucket versions to check

any element version, because the element could move between buckets during the

check. The allocating cuckoo hashmap needs only to lock the element version,

because the hashmap has access to the element’s unchanging memory address.

Although a non-allocating transactional cuckoo hashmap is more complex, we

build it to improve the allocating transactional cuckoo hashmaps’ cache

performance during lookups: the non-allocating algorithm does not need to follow

any pointers. Nevertheless, we may not see a great improvement in cache usage

because we must execute approximately double the number of lookups: each find

requires performing two lookups (one during execution, and another during commit

to check if the element version is still valid).

5.2 Evaluation

As we did with the queue, we evaluate all hashmaps on a set of microbenchmarks to

determine their scalability and performance. We aim to provide evidence for our

hypothesis that, unlike the flat combining queue, the cuckoo hashmap will retain its

scalability and behavior even in a transactional setting.

5.2.1 Microbenchmarks

All experiments are run on the same machine as the queue experiments (with

100GB DRAM, two 6-core Intel Xeon X5690 processors with hyperthreading

clocked at 3.47GHz and a 64-bit Linux 3.2.0 operating system). All benchmarks and

STO data structures are compiled with g++-5.3. In all tests, threads are pinned to

cores, with at most one thread per logical core. In all performance graphs, we show

the median of 5 consecutive runs with the minimum and maximum performance
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results represented as error bars.

Cache misses are recorded by running the benchmark with 8 threads, with each

thread performing 10M transactions, under the profiling tool Performance Events

for Linux (perf). The sampling period is set to 1000, meaning that every 1000th

cache miss is recorded. We report the number of cache misses reported by perf

(approximately 1/1000 of the actual number of cache misses).

Parameters

Ratio of Find:Insert:Erase Operations. The ratio of inserts:erasures is kept at 1 to

ensure that the hashmap does not always become empty or only grow in size. Keys

are drawn uniformly at random from a predetermined range, in such a way that half

of the inserts will succeed (the key to insert is not present) and half of the erasures

will succeed (the key to erase is present). Tests of 5% insert, 5% erase, and 90% find

simulate the most likely use cases for hashmaps [36]. Tests of equal proportion

(33%) of all operations investigate how the hashmap reacts to an increased rate of

inserts and erasures.

Operations per transaction. We choose to run all tests comparing transactional

to non-transactional data structures using single-operation transactions. As

discussed in Section 3.4.1, this provides a more fair evaluation of transactional data

structures against concurrent ones. In addition, it allows us to minimize the

differences between transaction hashmap implementations so we can get a baseline

comparison.

Number of buckets. All hashmaps statically set the number of buckets in the

data structure. The number of elements allowed in one bucket of a cuckoo hashmap

is fixed at a particular value, which we will call the maximum fullness. The capacity

(number of buckets × number of elements per bucket) of the cuckoo hashmap is
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fixed at some finite value because the cuckoo hashmap has a fixed size bucket; the

chaining hashmap has no fixed capacity because a bucket’s chain can grow

arbitrarily long. The number of buckets and the size of each bucket affect the

number of cache lines accessed during the test (for example, a larger hashmap may

not be expected to fit into the L2 cache, whereas a small hashmap at full capacity

will fit entirely in cache). During all tests, the number of keys present in the

hashmap is not allowed to outgrow its capacity.

Fullness. Fullness indicates the ratio of the number of keys to the number of

buckets. This determines the average number of elements to be found per bucket. In

the discussion that follows, we use fullness to indicate the load on the chaining

hashmap, and the number of items in the buckets of the cuckoo hashmap. Greater

fullness therefore corresponds to a greater load in the chaining hashmap, and a

higher occupancy of each bucket in the cuckoo hashmaps. (Note, however, that

chaining hashmaps can never truly be “full”, as they have unlimited capacity.)

We set fullness at steady state by picking a maximum fullness for the cuckoo

hashmap: the tests are implemented in such a way that, at steady state, fullness is

expected to be 75% of the maximum fullness of the cuckoo hashmap. This is

controlled by picking a maximum key value. The maximum key value of inserted

elements is twice the number of elements the hashmap will contain when its size

reaches a steady state. The initial size of the hashmap is set to its size at steady

state to ensure that the size of the hashmap should remain relatively constant

throughout the benchmark.

Multi-Thread, Variable-Capacity Singletons Test

This test performs find, insert, and erase singleton transactions, with the probability

of each operation specified by a probability distribution. We run the test with
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varying numbers of threads; each thread runs 5 million singleton transactions. To

test hashmap behavior at different sizes, we set both the number of buckets in the

hashmap, and the maximum fullness of the cuckoo hashmap. The steady-state size

is 75% maximum capacity (of the cuckoo hashmap).

We run two variations of this test: one with a probability distribution of 33%

insert, 33% erase, and 34% find; and another with a probability distribution of 5%

insert, 5% erase, and 90% find.

5.2.2 Overview of Results

We measure the speed (operations performed per second), abort rate, and cache

performance (number of cache misses) of each hashmap. The full results can be

found in Appendix B. As we did with the queue results, we proceed in our

discussion by first giving an overview of our conclusions, and then showing how we

reach these conclusions through a sequence of hypotheses. We draw the following

conclusions from our results (corresponding to our four hypotheses):

1. The transactional, key-fragments cuckoo hashmap achieves the best overall

cache performance.

2. When the hashmap can fit entirely or mostly in cache, the transactional

cuckoo hashmaps outperform the transactional chaining hashmap.

3. When the cuckoo hashmaps have a high maximum fullness, and the average

number of elements per bucket is high, the transactional cuckoo hashmaps

outperform the transactional chaining hashmap.

4. The number of cache misses is strongly correlated with overall performance,

particularly because the abort rate of our tests is negligible.

Our overall conclusion is that the relative performance of transactional cuckoo
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hashmaps and transactional chaining hashmaps mirrors the relative performance

expected of their non-transactional counterparts.

5.2.3 Hypothesis 1

The non-allocating transactional cuckoo hashmap (T-CuckooNA)

achieves the best cache usage out of all transactional hashmaps. (Not

Supported)

The number of cache misses is influenced by the number of allocations, the patterns

in which these allocations are accessed, and the patterns in which the hashmap

buckets themselves are accessed. Our results in Figures 5.2.1, 5.2.2, and 5.2.3

demonstrate that, as expected, a pattern of 90% finds (5% inserts/5% erases)

achieves better cache performance than a pattern of 33% finds/inserts/erases. An

insert or erase does strictly more work than does a find, since both operations first

invoke a find to detect if the key is present, and then must allocate or remove the

element.

The non-transactional cuckoo hashmap experiences the least number of cache

misses on all tests, which we expect given its lack of transactional instrumentation.

Somewhat surprisingly, the non-allocating, transactional cuckoo hashmap does not

achieve the best overall cache performance. As we see in Figure 5.2.1, T-Chaining

has the best cache performance among the transactional hashmaps when the

maximum fullness (i.e., the maximum load on the hashmap) is set to 5. This is

likely due to the low number of pointer accesses when T-Chaining performs a find:

the chains are relatively short, and more buckets are likely to be empty. In

comparison, the cuckoo hashmaps must search through two entire bucket arrays on

an absent find.
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33%Find, 33%Insert, 33%Erase

90%Find, 5%Insert, 5%Erase

Figure 5.2.1: Hashmap Cache Misses (Maximum Fullness 5): T-Chaining
has the best cache performance of the transactional hashmaps.
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33%Find, 33%Insert, 33%Erase

90%Find, 5%Insert, 5%Erase

Figure 5.2.2: Hashmap Cache Misses (Maximum Fullness 10): T-
CuckooKF has the best cache performance of the transactional hashmaps,
followed by T-CuckooNA.
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33%Find, 33%Insert, 33%Erase

90%Find, 5%Insert, 5%Erase

Figure 5.2.3: Hashmap Cache Misses (Maximum Fullness 15): T-
CuckooKF has the best cache performance of the transactional hashmaps,
followed by T-CuckooNA. We see that the difference between T-
CuckooKF’s cache performance and T-Chaining’s cache performance is
increasing as fullness increases.
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Figures 5.2.2 and 5.2.3 indicate that when the hashmap has longer chains or

bucket sizes (maximum fullness 10 or 15) and cannot fit entirely in cache (i.e., the

number of buckets is 125K or 1M), T-CuckooKF achieves the best transactional

hashmap cache performance, followed by T-CuckooNA. T-Chaining and T-CuckooA

experienced a lower cache performance because every find in T-Chaining and

T-CuckooA requires following pointers. As the number of elements per bucket

increases, T-CuckooA and T-Chaining follow an increasing number of pointers per

find, and their cache performance worsens. We also note that the difference in the

number of cache misses between T-Chaining and T-CuckooKF increases as

maximum fullness increases. This occurs because, on average, T-Chaining’s chains

are longer and T-Chaining has to follow more pointers each time it performs a

lookup.

A find will never follow pointers in the buckets of T-CuckooNA, and will not

follow pointers in the buckets of T-CuckooKF if the element is absent. We

conjecture that T-CuckooKF has fewer cache misses than T-CuckooNA because the

additional memory accesses from following pointers is minimal (a present find

follows only one pointer), and the additional lookups in T-CuckooNA mean that

T-CuckooNA accesses approximately twice the number of buckets per operation

compared to T-CuckooKF.

NOT SUPPORTED: T-CuckooNA has worse cache performance than T-

CuckooKF when the hashmap has 125K or 1M buckets, and only slightly better cache

performance when the hashmap has 10K buckets. At maximum fullness 5, T-Chaining

has the best cache performance; at maximum fullness 10 and 15, T-CuckooKF has

the best cache performance.
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5.2.4 Hypothesis 2

When the hashmap can fit entirely or mostly in cache, the transactional

cuckoo hashmaps outperform the transactional chaining hashmap.

(Supported)

90F/5I/5E

33F/33I/33E

Figure 5.2.4: Hashmap Performance: 10K Buckets, Maximum Fullness 5.
The transactional cuckoo hashmaps outperform T-Chaining.
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To evaluate this hypothesis, we look at our results for a map with 10K buckets with

a maximum fullness of 5, which fits entirely in cache (Figure 5.2.4).1 For all

hashmaps, performance with 90% finds (5% inserts/erases) is approximately 1.5×

that of the 33% finds/inserts/erases. This is expected: a find is both faster to

perform than an insert or erase, and a find requires only reading a bucket version

and performs no writes. On both benchmarks, the cuckoo hashmaps achieve

performance approximately 1.2× that of T-Chaining. There is little difference

between the performance of T-CuckooA and the performance of T-CuckooKF,

because cache performance does not play a significant role in these benchmarks.

We note that this result is consistent with the claim made in Section 5.1.2 that

cuckoo hashmaps outperform chaining hashmaps when the hashmap can fit in cache.

SUPPORTED: The transactional cuckoo hashmaps outperform the transactional

chaining hashmap when the hashmap can fit in cache.

5.2.5 Hypothesis 3

As maximum fullness increases, T-CuckooKF outperforms T-Chaining by

a greater margin. (Supported)

We analyze our results for hashmaps with various number of buckets, and compare

their performance with a maximum fullness of 5 to that with a maximum fullness of

15. We show the results for hashmaps with 1M buckets (full results are in

Appendix B).

We first consider the results from the 33% finds/inserts/erases test. Our results

1Our preliminary performance results on the Multi-thread Singletons Test show the same pattern
as our cache performance results: T-CuckooNA performs better than T-CuckooA on average, and
worse than T-CuckooKF. We omit these from the performance results presented here because the
correctness of T-CuckooNA has not been confirmed.
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T-Chaining

T-CuckooKF

Figure 5.2.5: T-Chaining vs. T-CuckooKF: Performance as fullness in-
creases (1M Buckets, 33F/33I/33E). T-Chaining experiences a greater
drop in performance than does T-CuckooKF as fullness increases. T-
Chaining’s performance drops over 50% as fullness goes from 5 to 15.
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T-Chaining

T-CuckooKF

Figure 5.2.6: T-Chaining vs. T-CuckooKF: Performance as fullness in-
creases (10K Buckets, 90F/5I/5E). T-Chaining experiences a greater drop
in performance than does T-CuckooKF as fullness increases. T-Chaining’s
performance decreases by over 50% with 1M buckets as fullness increases.

97



show that T-CuckooKF achieves performance 1.5–2× that of T-Chaining as

maximum fullness increases to 15, regardless of the number of buckets (Figure 5.2.5).

This is caused by a decrease in the performance of T-Chaining as fullness increases:

performance decreases by approximately 33% when the hashmap has 10K buckets,

and by over 50% when the hashmap has 1M buckets (Figure 5.2.5). T-CuckooKF’s

performance, in contrast, decreases only slightly or remains essentially unchanged.

Our results from the 33% finds/inserts/erases test therefore support our

hypothesis, regardless of the number of buckets in the hashmap: the difference

between T-CuckooKF’s performance and T-Chaining’s performance increases as

fullness increases.

We also consider our results from the 90% finds (5% inserts/erases) test to see

if they support our hypothesis. Again, fullness seems to have a drastic impact on

T-Chaining’s performance, regardless of the number of buckets in the hashmap

(performance drops by approximately 50%), and almost no impact on the

performance of T-CuckooKF (Figure 5.2.6).

When the hashmap contains 10K buckets, T-CuckooKF’s performance is

approximately 1.2× that of T-Chaining at a fullness of 5. This difference increases

with fullness: T-CuckooKF performs over 2× better than T-Chaining at a fullness of

15. We observe a similar phenomenon when the hashmap has 125K buckets, and

when the hashmap has 1M buckets (Figure 5.2.6): T-CuckooKF’s performance goes

from approximately 2× the performance of T-Chaining at a fullness of 5, to over 3×

at a fullness of 15.

This result is consistent with the claim made in Section 5.1.2 (i.e., that cuckoo

hashmaps outperform chaining hashmaps when the average number of elements per

bucket is high). Regardless of the number of buckets in the hashmap, T-Chaining

experiences a much more drastic drop in performance than T-CuckooKF as fullness
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increases, and the difference in performance also therefore increases.

SUPPORTED: T-CuckooKF outperforms T-Chaining by a greater margin as max-

imum fullness increases.

5.2.6 Hypothesis 4

An algorithm’s cache usage most heavily affects performance on our

benchmarks; abort rate is negligible and has little effect on performance.

(Supported)

We pose this hypothesis to determine if the bottleneck in performance is the

algorithm’s cache usage or its abort rate. Our results for both tests discussed in

Hypothesis 3 indicate that the number of cache misses is strongly correlated with

performance. In general, the performance of all hashmaps decreases slightly (less

than 20%) as hashmap size increases from 10K to 1M buckets. We attribute this to

the increasing number of cache misses with increasing numbers of buckets.

The greater difference between T-CuckooKF’s performance and T-Chaining’s

performance as fullness increases is also mirrored in the increased difference between

T-CuckooKF’s and T-Chaining’s number of cache misses (discussed in

Section 5.2.3). T-CuckooA’s performance also drops more significantly than

T-CuckooKF’s as fullness increases (we observe, however, that T-CuckooA still

performs at least as well as T-Chaining). T-CuckooA uses the same algorithm as

T-CuckooKF, but has worse cache usage, which provides further evidence that

cache usage plays a crucial part in performance.

Our results in Table 5.2.1 and in Appendix B.8 indicate that the abort rate

remains relatively constant regardless of the fullness of the hashmap, but decreases

as the number of buckets in the map increases. A greater number of buckets
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Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00130 0.00332 0.00765 0.01270 0.01802 0.02119
T-CuckooA 0.00035 0.00115 0.00216 0.00368 0.00558 0.00546

T-CuckooKF 0.00025 0.00077 0.00222 0.00398 0.00555 0.00677
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10K Buckets

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00011 0.00034 0.00085 0.00126 0.00166 0.00212
T-CuckooA 0.00002 0.00009 0.00015 0.00028 0.00041 0.00056

T-CuckooKF 0.00002 0.00006 0.00013 0.00022 0.00037 0.00052
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

125K Buckets

Table 5.2.1: Hashmap Abort Rate (Maximum Fullness 10, 33% Finds/In-
serts/Erases)

decreases the abort rates, since the probability that two threads will simultaneously

attempt to read or modify the same bucket decreases. Abort rate is negligible in

nearly all tests, with the chaining hashmap experiencing the highest abort rates (the

median of 5 trials never exceeding 0.008%).

We see that cache performance affects overall performance more than the abort

rate; as the number of buckets increases, performance drops even while the abort

rate decreases. The major factor detracting from performance appears to be the

significant increase in the number of cache misses.

SUPPORTED: The number of cache misses is strongly correlated with performance

on our benchmarks, but abort rate is low and does not heavily affect performance.

5.2.7 Conclusion

Our evaluation demonstrates that the cuckoo hashmap does not experience crippling

performance loss when integrated into a transactional setting, and that a scalable,
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yet transactional cuckoo hashmap implementation exists. Furthermore, the relative

behaviors of the transactional cuckoo and chaining hashmap mirrors the expected

relative behaviors of their non-transactional counterparts: the transactional cuckoo

hashmap outperforms the transaction chaining hashmap in scenarios in which cache

performance is a bottleneck (high fullness), or when the time complexity and time

to execute the operations is a bottleneck (when the hashmap can fit in cache).

We contrast our results with that of the strong transactional flat combining

queue, and note that, unlike the strong flat combining queue, the cuckoo (and

chaining) hashmaps scale in a transactional setting. We now look to the scalable

commutativity rule, and the commutativity of our hashmap interface, to determine

exactly why our transactional hashmaps can scale when our strong transactional

queues cannot.

5.3 Commutativity of Transactional Hashmaps

In this section, we discuss the commutativity of non-transactional and transactional

hashmap operations. We argue that synchronizing non-commutative transactions

does not cripple the scalability of hashmaps implementing our hashmap interface,

and that this occurs because the transactional setting adds few additional

commutativity constraints to our hashmap interface. This is exemplified by our

transactional chaining and cuckoo hashmap algorithms, which both scale in a

transactional setting.

Our commutativity and scalability results with cuckoo and chaining hashmaps

are in sharp contrast with our results from the strong flat combining queue. In

Chapter 4, we saw how the flat combining technique relies on operation

commutativity that is heavily reduced in a transactional setting, and that the
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modifications to flat combining required to synchronize non-commuting transactions

reduce the effectiveness of the flat combining technique and cripple its scalability.

As we discover, the hashmap interface experiences only a slight loss of operation

commutativity in a transactional setting; this allows transactional cuckoo and

chaining hashing algorithms to scale.

In a non-transactional hashmap, insert and erase operations do not commute

with finds, other inserts, or other erases when the argument keys are hashed to the

same bucket, and at least one insert or erase out of the two operations succeeds.

These scenarios are shown in Table 5.3.1. Both cuckoo and chaining hashmaps

synchronize these non-commutative operations with per-bucket locks: an insert or

erase in a chaining hashmap acquires a bucket-specific lock that protects access to

the bucket during the duration of the insert or erase, while an insert or erase in a

cuckoo hashmap locks both buckets in which the element may be placed. If the

hashmap is large and the workload uses a large range of keys, it is very likely that

two operations will commute because they will modify or read separate buckets. By

the scalable commutativity rule, there exists a implementation of a hashmap

algorithm that scales whenever insert or erase operations occur in separate buckets.

Indeed, there are several examples of non-transactional chaining and cuckoo

hashmap implementations that scale (with most reasonable hashmap workloads and

a large enough map).

In a transactional setting, we have the added constraint that no two

transactions commute if (a) any operation in one transaction observes that a key is

present given one order of the transactions, but not the other; and/or (b) a key is

present in the map immediately after both transactions commit in one ordering of

the transactions, but not present in the map immediately after both transactions
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Operations H H’

insert vs. erase (T, M.insert(k,v), false)
(T, M.erase(k), true)

(T, M.erase(k), true)
(T, M.insert(k,v), true)

insert vs. find (T, M.insert(k,v), true)
(T, M.find(k,v), true)

(T, M.find(k,v), false)
(T, M.insert(k,v), true)

erase vs. find (T, M.erase(k), true)
(T, M.find(k,v), false)

(T, M.find(k,v), true)
(T, M.erase(k), true)

insert vs. insert (T1, M.insert(k,v), true)
(T2, M.insert(k,v), false)

(T2, M.insert(k,v), true)
(T1, M.insert(k,v), false)

erase vs. erase (T1, M.erase(k), true)
(T2, M.erase(k), false)

(T2, M.erase(k), true)
(T1, M.erase(k), false)

Table 5.3.1: Hashmap operations that do not commute. H is the original
history; H’ is the history with the order of the two operations exchanged.
In the last two scenarios, note that it is important that the operations be
performed by two different threads for the history to contain observably
different results.

commit in the other ordering.

We can reason about commutativity in a transactional setting in terms of sets

of buckets that overlap between two transactions, rather than individual buckets

that are both modified or read by two operations. If an operation in a transaction

modifies a bucket that is read or modified by an operation in another transaction,

then the two transactions will not commute. Examples of larger transactions that

fail to commute are shown in Table 5.3.2.

Once again, if the hashmap is large and the workload uses a large range of

keys, it is very likely that two transactions will commute because they will modify

or read separate sets of buckets. The intersection between the set of buckets

modified in one transaction, and the set of buckets modified in the other, is likely to

be empty or small (depending on the length of the transactions and the particular

workload). We can therefore expect that an implementation of a cuckoo or chaining

hashmap will still scale in a transactional setting in nearly all the same scenarios in

103



Example H H’

1.

(T1, START_TXN, ())
(T1, M.find(k1,v), false)
(T1, M.insert(k1,v), true)
(T1, M.insert(k2,v), true)
(T1, COMMIT_TXN, ())
(T2, START_TXN, ())
(T2, M.find(k1,v), true)
(T2, M.insert(k1,v), false)
(T2, M.find(k2,v), true)
(T2, COMMIT_TXN, ())

(T2, START_TXN, ())
(T2, M.find(k1,v), false)
(T2, M.insert(k1,v), true)
(T2, M.find(k2,v), false)
(T2, COMMIT_TXN, ())
(T1, START_TXN, ())
(T1, M.find(k1,v), true)
(T1, M.insert(k1,v), false)
(T1, M.insert(k2,v), true)
(T1, COMMIT_TXN, ())

2.

(T1, START_TXN, ())
(T1, M.erase(k1), false)
(T1, M.erase(k2), true)
(T1, M.insert(k2,v), true)
(T1, COMMIT_TXN, ())
(T2, START_TXN, ())
(T2, M.insert(k1,v), true)
(T2, M.insert(k2,v), false)
(T2, COMMIT_TXN, ())

(T2, START_TXN, ())
(T2, M.insert(k1,v), true)
(T2, M.insert(k2,v), false)
(T2, COMMIT_TXN, ())
(T1, START_TXN, ())
(T1, M.erase(k1), true)
(T1, M.erase(k2), true)
(T1, M.insert(k2,v), true)
(T1, COMMIT_TXN, ())

Table 5.3.2: Example hashmap transactions that do not commute. H is
the original serial history; H’ is the history with the order of the two trans-
actions exchanged.

which individual operations commute.

To synchronize transactions that do not commute, both the cuckoo and

chaining hashmaps must synchronize all buckets that are modified by both

transactions, or that are modified by one transaction and observed by another. We

note that the synchronization necessary to add transactional guarantees to the

cuckoo hashmap is essentially equivalent to those necessary to add transactional

guarantees to the chaining hashmap. The difference between the two

synchronization mechanisms is that an operation that will require synchronizing one

bucket in the chaining hashmap will instead require synchronizing two buckets in

the cuckoo hashmap. Transactions are synchronized using the following method:
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A transactional find in a cuckoo hashmap and a chaining hashmap adds a read

of the bucket version(s) of the bucket(s) in which the key could be (or is) located. A

transactional insert adds a read of the bucket version of the bucket in which the key

is located only if the key is already present. A transactional erase adds a read of the

bucket version(s) of the bucket(s) in which the key could be located if the key is

absent, or a write of the bucket(s) if the key to erase is present. At commit time,

any bucket versions in the read set are locked (therefore locking their corresponding

buckets); the reads are then checked, and the writes installed.

We note that buckets are locked only at execution time, only at commit time,

or at both commit and execution time, depending on which operation accesses the

buckets. A transactional find, unsuccessful erase, or unsuccessful insert locks the

appropriate buckets only at commit time. A successful transactional erase locks the

appropriate buckets only at commit time, and a successful transactional insert locks

the appropriate buckets only at execution time (because insertions are eager, a

bucket into which an element is inserted does not need to be locked at commit time).

This algorithm allows for a implementation of a transactional hashmap that

can scale in nearly all those scenarios in which an implementation of a

non-transactional hashmap can scale. This is because the granularity of

synchronization of the transactional hashmap is still per-bucket synchronization.

The synchronization schemes of the cuckoo and chaining hashmaps rely on the

fundamental assumption that operations performed on separate buckets will

commute with each other. In a transactional setting, this assumption is still true for

transactions whose operations modify or read disjoint sets of buckets. Because the

scenarios that require extra synchronization to handle non-commuting transactions

are rare, and these scenarios do not require synchronization beyond the level of

buckets, both the transactional cuckoo and chaining hashmaps scale in nearly all
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the same situations in which their non-transactional counterparts scale. This

demonstrates that, unlike our queue operation interface, our hashmap operation

interface (and the commutativity of operations in a transactional setting) allows for

a scalable implementation of a transactional hashmap.

Furthermore, the cuckoo hashmap retains its non-transactional

characteristics— better cache performance than the chaining hashmap, and

asymptotic constant (or amortized constant) time bounds for its operations—even

in the transactional setting. This is cuckoo hashing’s fundamental aspects—hashing

into multiple, fixed-size buckets, and cuckoo shuffling for inserts—are not modified

when the cuckoo hashmap is made transactional. This result contrasts with our

findings with the flat combining algorithm, which has to be fundamentally modified

to support queue transactions.
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6
Future Work and Conclusion

6.1 Future Work

One direction of future work is to specialize our data structures for singleton

transactions. As we noted in Chapter 4, the commutativity between singleton

transactions is equivalent to the commutativity between single operations. Special

treatment of singleton transactions allows singletons to avoid the transactional

overhead that is necessary to synchronize multi-operation transactions. However,

singletons would need to be carefully handled if they interleave with multi-operation
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transactions.

This work defines a class of concurrent data structure interfaces that do not

suffer a high loss of commutativity in a transactional setting, and proposes that

data structures implementing these interfaces will retain their scalability when

modified to provide transactional guarantees. This claim can be tested further by

implementing and benchmarking other data structures that fall into this class.

Building these data structures will hopefully also result in additional transactional

STO data structures that perform and scale well.

Another class of data structures interfaces defined by this work are those

interfaces that suffer crippling performance and scalability loss in a transactional

setting. This class includes, for example, the strong queue interface. For any

concurrent data structure that falls into this class, alternative specifications for the

data structure, such as the one we proposed for the queue, can be explored. These

data structure specifications can be tuned to provide some useful guarantees in a

transactional setting beyond that of a simple concurrent data structure, while still

achieving high performance.

6.2 Conclusion

This thesis argues that retaining the performance benefits and scalability of

highly-concurrent data structure algorithms within a transactional framework such

as STO is contingent upon the amount of commutativity that is lost when

transactions must be supported. The amount of commutativity between transactions

determines the amount of independence between the synchronization strategy used

by the highly-concurrent algorithm, and the transactional bookkeeping and

mechanisms that must be added to provide transactional guarantees.
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Our investigation into concurrent and transactional queue algorithms

demonstrates that there is a large performance gap between our naively-concurrent

transactional queues, and the best-performing non-transactional concurrent queue

(the flat combining queue). However, the flat combining queue suffers crippling

performance loss when moved into STO. This is because the flat combining

technique relies on operation commutativity that is prohibited in a transactional

setting; the fundamental principle of flat combining is that operations from different

threads can be applied in an arbitrary order to the queue, which is no longer true

when operations are performed within transactions. In order for flat combining to

support transactions, it must be modified in ways that greatly reduce its

effectiveness. By exploring an alternative queue specification that allows for greater

operation commutativity in a transactional setting, we provide evidence that the

effectiveness of the flat combining technique is dependent on operation

commutativity.

As an example of the opposite phenomenon, in which a concurrent algorithm

retains its performance benefits and scalability in a transactional setting, we look to

cuckoo and chaining hashmap algorithms. Our hashmap interface experiences fewer

added commutativity constraints in a transactional setting than does our strong

queue interface. Consequently, both the transactional cuckoo and transactional

chaining hashmaps retain their scalability. Furthermore, the beneficial properties of

cuckoo hashmaps (such as good performance in a small hashmap with several values

in each bucket) are present even in a transactional setting. This is because the

cuckoo hashing synchronization algorithm can be implemented independently of the

modifications necessary to support transactions. In other words, the lack of added

commutativity constraints in the transactional setting means that the concurrent

cuckoo hashmap algorithm can be made transactional without fundamentally

109



changing its behavior.

Our results provide a way to determine in advance whether a

highly-concurrent, non-transactional data structure can be made transactional while

still achieving high scalability and performance. By evaluating how much

commutativity a particular data structure’s interface loses when moving from a

non-transactional to a transactional setting, we also evaluate the impact on the data

structure’s performance and scalability when it is modified to support transactions.

This general method enables us to explain why and how different transactional data

structures achieve the performance that they do. With this method, researchers can

focus on data structure designs that have the potential for high performance in

transactional settings, and avoid unfortunate surprises from data structures that are

destined to underperform.
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A
Queue Results

All experiments are run on a 100GB DRAM machine with two 6-core Intel Xeon
X5690 processors clocked at 3.47GHz. Hyperthreading is enabled in each processor,
resulting in 24 available logical cores. The machine runs a 64-bit Linux 3.2.0
operating system, and all benchmarks and STO data structures are compiled with
g++-5.3. In all tests, threads are pinned to cores, with at most one thread per
logical core. In all performance graphs, we show the median of 5 consecutive runs
with the minimum and maximum performance results represented as error bars.

Cache misses are recorded by running the Multi-Thread Singletons Test
benchmark with 8 threads, with each thread performing 10M transactions, under
the profiling tool Performance Events for Linux (perf). The sampling period is set
to 1000, meaning that every 1000th cache miss is recorded. We report the number of
cache misses reported by perf (approximately 1/1000 of the actual number of cache
misses).
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A.1 Cache Misses

Queue Cache Misses
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A.2 Performance of Non-transactional
Concurrent Queues

Multi-Thread Singletons Test
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Push-Pop Test (2 threads)
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A.3 Performance of Various Transactional Queues

Multi-Thread Singletons Test
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Push-Pop Test (2 threads)

A.4 Push-Pop Test: Ratio of Pops to Pushes

Queue Pops per 100 Pushes
T-QueueO 64
T-QueueP 28
T-FCQueue 57

NT-FCQueueWrapped 94
NT-FCQueue 110

Basket 42
Moir 62

Michael-Scott 54
Optimistic 50
Read-Write 84
Segmented 50
TsigasCycle 52

Ratio of pops to pushes when the push-only and pop-only threads are exe-
cuting simultaneously
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A.5 Abort Rate Results

Queue Initial Size
10000 100000

T-QueueO 0.00001 0.00001
T-QueueP 1.54560 1.60886
T-FCQueue 0.62494 1.62620

WT-FCQueue 0.00000 0.00000

Push-Pop Test (2 threads)

Queue #Threads
2 4 8 12 16 20

T-QueueO 7.51638 10.21210 7.62362 7.46284 6.71117 6.33827
T-QueueP 3.25357 2.84958 2.23814 2.26892 2.31778 2.32787
T-FCQueue 3.99773 6.08289 4.60842 4.78435 4.96070 5.33221

WT-FCQueue 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Multi-Thread Singletons Test: Initial Size 10000∗

Queue #Threads
2 4 8 12 16 20

T-QueueO 7.88767 10.67091 7.85545 7.54535 6.73918 6.48418
T-QueueP 3.07026 2.70427 2.12894 2.22341 2.22941 2.27197
T-FCQueue 4.05484 5.98340 4.51612 4.83815 5.08319 5.22679

WT-FCQueue 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Multi-Thread Singletons Test: Initial Size 100000∗

∗We note that the abort rate appears to spike at 4 threads and decrease as the
number of threads increases. One possible explanation may be that contention
varies due to the spread of the threads among the CPU sockets.
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B
Hashmap Results

All experiments are run on a 100GB DRAM machine with two 6-core Intel Xeon
X5690 processors clocked at 3.47GHz. Hyperthreading is enabled in each processor,
resulting in 24 available logical cores. The machine runs a 64-bit Linux 3.2.0
operating system, and all benchmarks and STO data structures are compiled with
g++-5.3. In all tests, threads are pinned to cores, with at most one thread per
logical core. In all performance graphs, we show the median of 5 consecutive runs
with the minimum and maximum performance results represented as error bars.

Cache misses are recorded by running the benchmark with 8 threads, with each
thread performing 10M transactions, under the profiling tool Performance Events
for Linux (perf). The sampling period is set to 1000, meaning that every 1000th
cache miss is recorded. We report the number of cache misses reported by perf
(approximately 1/1000 of the actual number of cache misses).
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B.1 Cache Misses

Max Fullness 5: 33%Find, 33%Insert, 33%Delete

Max Fullness 5: 90%Find, 5%Insert, 5%Delete
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Max Fullness 10: 33%Find, 33%Insert, 33%Delete

Max Fullness 10: 90%Find, 5%Insert, 5%Delete
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Max Fullness 15: 33%Find, 33%Insert, 33%Delete

Max Fullness 15: 90%Find, 5%Insert, 5%Delete
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B.2 Performance: 10K Buckets, 33%Find, 33%
Insert, 33% Erase

Maximum Fullness 5

Maximum Fullness 10
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Maximum Fullness 15

B.3 Performance: 10K Buckets, 90%Find, 5%
Insert, 5% Erase

Maximum Fullness 5
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Maximum Fullness 10

Maximum Fullness 15
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B.4 Performance: 125K Buckets, 33%Find, 33%
Insert, 33% Erase

Maximum Fullness 5

Maximum Fullness 10
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Maximum Fullness 15

B.5 Performance: 125K Buckets, 90%Find, 5%
Insert, 5% Erase

Maximum Fullness 5
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Maximum Fullness 10

Maximum Fullness 15
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B.6 Performance: 1M Buckets, 33%Find, 33%
Insert, 33% Erase

Maximum Fullness 5

Maximum Fullness 10
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Maximum Fullness 15

B.7 Performance: 1M Buckets, 90%Find, 5%
Insert, 5% Erase

Maximum Fullness 5
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Maximum Fullness 10

Maximum Fullness 15
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B.8 Abort Rate Results

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00100 0.00325 0.00781 0.01291 0.01823 0.01843
T-CuckooA 0.00025 0.00108 0.00315 0.00487 0.00722 0.00773

T-CuckooKF 0.00025 0.00100 0.00286 0.00483 0.00664 0.00799
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 5

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00130 0.00332 0.00765 0.01270 0.01802 0.02119
T-CuckooA 0.00035 0.00115 0.00216 0.00368 0.00558 0.00546

T-CuckooKF 0.00025 0.00077 0.00222 0.00398 0.00555 0.00677
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 10

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00130 0.00375 0.00855 0.01460 0.01891 0.02273
T-CuckooA 0.00025 0.00097 0.00220 0.00389 0.00553 0.00528

T-CuckooKF 0.00020 0.00080 0.00185 0.00315 0.00473 0.00502
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 15

33F/33I/33E, 10K Buckets Abort Rate Results
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Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00030 0.00085 0.00187 0.00285 0.00367 0.00455
T-CuckooA 0.00005 0.00055 0.00089 0.00135 0.00162 0.00211

T-CuckooKF 0.00005 0.00038 0.00077 0.00118 0.00159 0.00215
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 5

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00050 0.00100 0.00229 0.00318 0.00409 0.00534
T-CuckooA 0.00020 0.00057 0.00106 0.00150 0.00178 0.00233

T-CuckooKF 0.00020 0.00057 0.00095 0.00140 0.00171 0.00243
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 10

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00030 0.00103 0.00266 0.00378 0.00449 0.00584
T-CuckooA 0.00025 0.00065 0.00115 0.00166 0.00205 0.00250

T-CuckooKF 0.00010 0.00068 0.00111 0.00163 0.00196 0.00262
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 15

90F/5I/5E, 10K Buckets Abort Rate Results
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Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00008 0.00028 0.00065 0.00101 0.00132 0.00174
T-CuckooA 0.00005 0.00014 0.00032 0.00051 0.00067 0.00091

T-CuckooKF 0.00002 0.00009 0.00026 0.00044 0.00065 0.00091
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 5

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00011 0.00034 0.00085 0.00126 0.00166 0.00212
T-CuckooA 0.00002 0.00009 0.00015 0.00028 0.00041 0.00056

T-CuckooKF 0.00002 0.00006 0.00013 0.00022 0.00037 0.00052
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 10

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00010 0.00047 0.00115 0.00163 0.00208 0.00267
T-CuckooA 0.00005 0.00015 0.00036 0.00056 0.00069 0.00084

T-CuckooKF 0.00005 0.00013 0.00028 0.00046 0.00052 0.00075
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 15

33F/33I/33E, 125K Buckets Abort Rate Results
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Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00001 0.00006 0.00016 0.00023 0.00030 0.00038
T-CuckooA 0.00001 0.00003 0.00008 0.00011 0.00021 0.00026

T-CuckooKF 0.00001 0.00003 0.00006 0.00011 0.00016 0.00026
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 5

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00003 0.00008 0.00016 0.00025 0.00032 0.00042
T-CuckooA 0.00001 0.00003 0.00009 0.00013 0.00018 0.00026

T-CuckooKF 0.00001 0.00002 0.00006 0.00009 0.00013 0.00020
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 10

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00004 0.00009 0.00020 0.00027 0.00037 0.00047
T-CuckooA 0.00001 0.00004 0.00009 0.00013 0.00018 0.00023

T-CuckooKF 0.00001 0.00002 0.00005 0.00007 0.00013 0.00018
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 15

90F/5I/5E, 125K Buckets Abort Rate Results
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Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00002 0.00004 0.00009 0.00012 0.00018 0.00022
T-CuckooA 0.00000 0.00001 0.00003 0.00004 0.00007 0.00010

T-CuckooKF 0.00000 0.00001 0.00002 0.00004 0.00006 0.00009
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 5

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00002 0.00004 0.00010 0.34599 0.24256 0.13496
T-CuckooA 0.00000 0.00001 0.00003 0.15493 0.10251 0.04467

T-CuckooKF 0.00000 0.00001 0.00002 0.09270 0.00520 0.06208
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 10

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00002 0.00005 0.14779 0.08940 0.00022 0.00027
T-CuckooA 0.00000 0.00001 0.03164 0.01825 0.00005 0.00008

T-CuckooKF 0.00000 0.00001 0.01399 0.00735 0.00005 0.00007
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 15

33F/33I/33E, 1M Buckets Abort Rate Results
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Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00000 0.00001 0.00003 0.00003 0.00004 0.00006
T-CuckooA 0.00000 0.00001 0.00001 0.00001 0.00002 0.00003

T-CuckooKF 0.00000 0.00000 0.00000 0.00001 0.00002 0.00003
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 5

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00001 0.00001 0.00003 0.00034 0.00074 0.00022
T-CuckooA 0.00000 0.00000 0.00001 0.00050 0.00035 0.00007

T-CuckooKF 0.00000 0.00000 0.00001 0.00026 0.00002 0.00003
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 10

Hashmap #Threads
2 4 8 12 16 20

T-Chaining 0.00001 0.00001 0.00003 0.00636 0.00127 0.00016
T-CuckooA 0.00000 0.00000 0.00001 0.00001 0.00002 0.00037

T-CuckooKF 0.00000 0.00000 0.00001 0.00001 0.00002 0.00006
NT-Cuckoo 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Maximum Fullness 15

90F/5I/5E, 1M Buckets Abort Rate Results
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