
A Revised and Verified Proof of the Scalable Commutativity Rule

Lillian Tsai,† Eddie Kohler,⋆ M. Frans Kaashoek,† and Nickolai Zeldovich†
† MIT CSAIL ⋆ Harvard University

1 Introduction
This paper explains a flaw in the published proof of the Scal-
able Commutativity Rule (SCR) [1], presents a revised and
formally verified proof of the SCR in the Coq proof assistant,
and discusses the insights and open questions raised from our
experience proving the SCR.

2 The Scalable Commutativity Rule
In order to explore the connection between commutativity
and scalability in practical systems, Clements et al. [1] de-
fined a new type of commutativity called SIM commuta-
tivity,1 a property that can hold of certain interface spec-
ifications. This was used to state and prove the Scalable
Commutativity Rule (SCR), which claims that every SIM-
commutative interface has a conflict-free implementation—
that is, on modern machines, a scalable implementation.
Even if an interface is commutative only in a restricted con-
text, there exists an implementation that scales in that con-
text.

The rest of this section summarizes SIM commutativity
and the precise statement of the rule, and describes the pub-
lished proof of the rule.

2.1 Specifications
Specifications are represented using actions, where each ac-
tion is either an invocation (representing an operation call
with arguments) or a response (representing a return value).
Each invocation is made by a specific thread, and the corre-
sponding response is returned to the same thread. The divi-
sion into invocations and responses models blocking inter-
faces and concurrent operations [2]. Invocations are written
as “f (args)α” and responses are written as “retvalα,” where
overbars mark responses and Greek letters represent thread
IDs.

A particular execution of a system is a history or trace,
which is just a sequence of actions. For example,

H = [Aα, Bγ , Cβ , Aα, Cβ , Bγ , Dα, Dα, Eβ , Fγ , Gα, Eβ , Gα, Fγ]

consists of seven invocations and seven corresponding re-
sponses across three different threads. In a well-formed
history, each thread’s actions alternate invocations and re-
sponses, so each thread has at most one outstanding invoca-
tion at any point. H above is well-formed; for instance, in
the thread-restricted subhistory H|α =[Aα, Aα, Dα, Dα, Gα,
Gα], which selects α’s actions from H, invocations and re-
sponses alternate as required.

1SIM stands for State-dependent, Interface-based, and Monotonic.

A specification models an interface’s behavior as a prefix-
closed set of well-formed histories. A system execution is
“correct” according to the specification if its trace is included
in the specification. For instance, if S corresponded to the
POSIX specification, then [getpidα, 92α] ∈ S (a process
may have PID 92) but [getpidα, ENOENTα] ̸∈ S (the get-
pid() system call may not return that error). A specification
constrains both invocations and responses: [NtAddAtomα]
is not in the POSIX specification because NtAddAtom is
not a POSIX system call.

An implementation is an abstract machine that takes in-
vocations and calculates responses. The original proof of
the SCR by Clements et al. [1] (also presented in Sec-
tion 2.4) uses a class of machines on which conflict-freedom
is defined; a good analogy is a Turing-type machine with a
random-access tape, where conflict-freedom follows if the
machine’s operations on behalf of different threads access
disjoint portions of the tape.

An implementation M exhibits a history H if, when fed
H’s invocations at the appropriate times, M can produce H’s
responses (so that its external behavior equals H overall). An
implementation M is correct for a specification S if M’s re-
sponses always obey the specification. This means that every
history exhibited by M is either in S or contains some in-
valid invocation.

2.2 Commutativity
SIM commutativity aims to capture state dependence at the
interface level. State dependence means SIM commutativity
must capture when operations commute in some states, even
if those same operations do not commute in other states. SIM
commutativity captures this contextually, without reference
to any particular implementation’s state: to reason about pos-
sible implementations, SIM commutativity captures the scal-
ability inherent in the interface itself. This in turn makes it
possible to use the SCR early in software development, dur-
ing interface design.

Commutativity states that actions may be reordered with-
out affecting eventual results. A history H′ is a reorder-
ing of H when H|t = H′|t for every thread t. This al-
lows actions to be reordered across threads, but not within
them. For example, if H = [Aα, Bβ , AαCα, Bβ , Cα],
then [Bβ , Bβ , Aα, Aα, Cα, Cα] is a reordering of H, but
[Bβ , Cα, Bβ , Cα, Aα, Aα] is not, since it doesn’t respect the
order of actions in H|α.

Now, consider a history H = X ++ Y (where ++ concate-
nates action sequences). Y SI-commutes in H when given any

1

reordering Y ′ of Y , and any action sequence Z,

X ++ Y ++ Z ∈ S if and only if X ++ Y ′ ++ Z ∈ S .

This definition captures state dependence at the interface
level. The action sequence X puts the system into a specific
state, without specifying a representation of that state (which
would depend on an implementation). Switching regions Y
and Y ′ requires that the exact responses in Y remain valid ac-
cording to the specification even if Y is reordered. The pres-
ence of region Z in both histories requires that reorderings of
actions in region Y cannot be distinguished by future opera-
tions, which is an interface-based way of saying that Y and
Y ′ leave the system in the same state.

Unfortunately, SI commutativity is not sufficient to prove
the SCR. To avoid certain degenerate cases,2 the definition
of commutativity must be strengthened to be monotonic (the
M in SIM). An action sequence Y SIM-commutes in a his-
tory H = X ++ Y when for any prefix P of any reordering
of Y (including P = Y), P SI-commutes in X ++ P. Equiv-
alently, Y SIM-commutes in H when, given any prefix P of
any reordering of Y , any reordering P′ of P, and any action
sequence Z,

X ++ P ++ Z ∈ S if and only if X ++ P′ ++ Z ∈ S .

Like SI commutativity, SIM commutativity captures state
dependence and interface basis. Unlike SI commutativity,
SIM commutativity excludes cases where the commutativ-
ity of a region changes depending on future operations. The
SCR relies on SIM commutativity.

2.3 Rule
The Scalable Commutativity Rule formally states the follow-
ing:

Assume an interface specification S that has a
correct implementation, and a history H = X ++ Y
exhibited by that implementation. Then whenever
Y SIM-commutes in H, there exists a correct im-
plementation of S whose steps in Y are conflict-
free. Since, given reasonable workload assump-
tions, conflict-free operations empirically scale on
modern multicore hardware, this implementation
is scalable in Y .

2.4 Proof
The published proof of the SCR proceeds by construction.
We briefly describe how the proof proceeds (eliding certain
details about interruptibility and thread switches).

2Consider an interface that supports an invocation undefinedbehavior
among others, where where if a trace contains undefinedbehavior, then
all later responses in the trace may return any value whatsoever. This re-
sembles the specification governing C compilers. Every sequence contain-
ing undefinedbehavior SI-commutes, even if the same sequence without
undefinedbehavior requires a non-scalable implementation (e.g., by repre-
senting a counter that increments by 1 on each call). However, most practi-
cal implementations cannot see the future, so they cannot choose a scalable
implementation in the hope that undefinedbehavior will eventually occur.

1 mrule(s, i) ≡
2 t← thread(i)
3 If head(s.h[t]) = COMMUTE: // enter conflict-free mode
4 s.commute[t]← TRUE; s.h[t]← tail(s.h[t])
5 If head(s.h[t]) = i:
6 s.h[t].pop()
7 If head(s.h[t]) is a response and thread(head(s.h[t])) = t:
8 r ← head(s.h[t]) // replay s.h
9 else if s.h[t] ̸= EMULATE: // H complete/input diverged
10 H′ ← a witness consistent with s.h[t]
11 For each invocation x in H′:
12 ⟨s.refstate, _, _⟩ ← M(s.refstate, x)
13 s.h[u]← EMULATE for each thread u
14 If s.h[t] = EMULATE:
15 ⟨s.refstate, r, _⟩ ← M(s.refstate, i)
16 else if s.commute[t]: // conflict-free mode
17 s.h[t]← tail(s.h[t])
18 else: // replay mode
19 s.h[u]← tail(s.h[u]) for each thread u
20 Return ⟨s, r⟩

Figure 1: Constructed scalable implementation mrule for his-
tory H and reference implementation M.

Given a specification S , an arbitrary reference implemen-
tation M satisfying S , and a specific history H = X ++ Y
generated by M where Y SIM-commutes in H, the proof aims
to construct an implementation mrule that scales (is conflict-
free) within the SIM-commutative region Y of H, but is cor-
rect (generates responses compatible with M) for any history.

mrule operates in three modes: replay, conflict-free, and
emulation modes. Its state consists of three parts:

1. s.h[t], a per-thread history initialized as X ++
[COMMUTE] ++ (Y|t) (where COMMUTE is a special
marker);

2. s.commute[t], a per-thread flag which is set to TRUE
when COMMUTE is reached;

3. s.refstate, the state of reference implementation M.

Figure 1 shows pseudocode for mrule’s implementation.
mrule starts in replay mode. This mode replays the history

H as long as each thread invokes operations in the same order
as it did in H. While thread t has not yet reached the commu-
tative region, t’s invocation matches that of s.h[t] (line 5), and
the next action in s.h[t] is a response to t’s invocation (line 7),
mrule returns the matching response (line 8) and advances the
stored history s.h[u] of all threads (line 19).

If the next step in s.h[t] is COMMUTE, then s.commute[t]
is set to TRUE (line 4) and mrule enters conflict-free mode. In
this mode, mrule starts replaying steps in Y|t. Just like before,
if the next action in s.h[t] is a response to t’s invocation (line
7), mrule returns the matching response (line 8). However, it
advances only the stored history of t, namely s.h[t] (line 17).
This means that after mrule enters conflict-free mode for a

2

thread t (i.e., s.commute[t] = TRUE), it accesses and modifies
only those state components specific to t, and any steps in the
conflict-free region Y are conflict-free.

Once s.h[t] has fully replayed or if a thread t diverges—
that is, t’s next invocation does not match the next invocation
in s.h[t]—then mrule switches to emulate mode for all threads.
In this mode, mrule feeds the reference machine M invoca-
tions to determine the response to return. Before we can use
the reference machine M in this way, however, the state of M
must reflect the state of the execution history thus far.

We initialize M’s state by finding a witness of M that is
consistent with the execution history (line 10). A witness of
the execution history is a sequence of invocations that, when
fed to M, generates the execution history. Once a witness is
found, we know that feeding M the witness’s sequence of
invocations (line 12) will bring M to a valid state, where all
future responses will be valid according to the spec.

Finding a witness is easy before mrule reaches conflict-free
mode: since mrule generated the history X ++ Y , simply take
all invocations in X (up to the current point) in order as the
witness. However, if mrule has entered the conflict-free mode
and executed operations in the SIM-commutative region, the
order in which operations were executed in this region may
not equal the order in which operations were executed in Y .
Here is where SIM commutativity comes in: we can reorder
the operations in the commutative region of the execution
history to achieve a witness. Because of SIM commutativity,
we can initialize M with a witness comprised of commu-
tative actions in a different order than that in which they
were executed, and all future responses will still be valid
according to the specification.

3 The flaw
This last, bold statement is where the proof goes wrong. To
help build intuition, we now present a counterexample in
which the proof-constructed machine fails: the construction
cannot find a witness that will initialize M with a valid state.

3.1 Specification
Imagine a specification S for opening and closing files with
the following two operations:

1. int open(): returns a currently-unused file descriptor
with value > 0;

2. int close(int fd): returns OK on success, EBADFD if
fd was never opened, or ECLOSEDFD if fd was previ-
ously opened, but is currently closed.

To better understand S , we look at a couple of examples
of valid and invalid histories. Let α and β be thread IDs. The
following histories would be valid:

H1 = [openα, 1α, openβ , 2β , close(1)α, OKα]

H2 = [openα, 1α, close(2)β , EBADFDβ]

H3 = [openα, 1α, close(1)α, OKα, close(1)α, ECLOSEDFDα]

and the following histories would be invalid:

H′
1 =[openα, 1α, openβ , 1β]

(returns used FD)

H′
2 =[openα, 1α, close(2)α, OKα]

(should return EBADFD)

H′
3 =[openα, 1α, close(1)α, OKα, close(1)α, OKα]

(should return ECLOSEDFD)

Note that all sequences of open operations are SIM-
commutative regions: reordering any number of open opera-
tions satisfies S , since the returned FDs are still unique and
positive in value.

3.2 Reference implementation
We now choose a simple reference implementation M that
implements S . The implementation has two pieces of global
state, namely a counter gfd initialized as 0 and a closed set
initially empty. The two operations are implemented as fol-
lows:

1. int open: increment gfd and return the new value;

2. int close(int fd): if 0 < fd ≤ gfd and fd ̸∈ closed,
then return OK and add fd to closed. Otherwise if fd ∈
closed, return ECLOSEDFD, else return EBADFD.

M satisfies S : open returns only unused, positive file de-
scriptors since the counter never (disregarding overflows)
repeats values. close(fd) returns OK if the file has been
opened, since all files below the current value of gfd must
have been opened before, and ECLOSEDFD if the file has
already been closed. Otherwise, fd is invalid and M returns
EBADFD.

Although M satisfies S , it is not scalable for SIM-
commutative regions: all open and close operations access
and write the shared, global counter and list.

We now have all the pieces to implement (and break) the
proof construction from subsection 2.4.

3.3 Incorrect construction
We first choose a SIM-commutative region of S . Since re-
gions of open operations are SIM-commutative, we generate
the following history using M:

Hcommute = [openα, 1α, openβ , 2β]

This history is used to set the state of mrule, initializing s.h[∗]
as

s.h[α] = [COMMUTE, openα, 1α]

s.h[β] = [COMMUTE, openβ , 2β]

Now we execute mrule on the following sequence of oper-
ations:

openβ , close(1)α

3

Following the proof construction, openβ will first cause
mrule to switch to conflict-free mode for β (Figure 1, lines
3-4) because s.h[β][0] = COMMUTE. After line 4,

s.h[β] = [openβ , 2β]

Next, since the invocation open matches the first invoca-
tion by β in s.h[β], mrule will return the value 2 (lines 5-8).
From line 17, the current state is now

s.h[α] = [COMMUTE, openα, 1α]

s.h[β] = []

The next invocation mrule receives is close(1)α. This
switches mrule to conflict-free mode for α (lines 3-4), and
sets the state to

s.h[α] = [openα, 1α]

mrule cannot, however, replay s.h[α] as it did for β.
close(1) represents a divergence from Hcommute, so mrule en-
ters emulate mode (lines 9-13). Our proof construction will
now have to get M to a valid state consistent with the current
history (line 10) so that we can feed M future invocations
during emulation phase (as shown in line 15).

At this point, our recorded history is

Hcurrent = [openβ , 2β]

But even though this history is correct (it’s in S), the ref-
erence implementation cannot exhibit this history. In M, the
first call to open always returns file descriptor 1.

This causes a serious problem. The construction must ini-
tialize s.refstate to some value that could have exhibited
Hcurrent, but no such state exists. As a result, any initializa-
tion sequence attempted by mrule can cause errors on future
invocations. Invoking open only once sets gfd = 1; a fol-
lowing open call would return 2, an invalid response (since
2 is still open). Invoking open two or more times would
avoid this problem, but would cause a following close(1)
call to return the incorrect error (ECLOSEDFD instead of
EBADFD). Thus, our proof construction fails both to find a
witness consistent with the current execution history and to
initialize M with a valid state.

3.4 When might the proof fail?
Note that M can reach a valid state if either none or all of
the SIM-commutative region in question has been replayed.
In other words, if mrule diverges before or after the SIM-
commutative region, then we can always get M to a valid
state. For the former, when mrule diverges before the SIM-
commutative region, we can just feed M the recorded his-
tory’s invocations sequentially in the order in which they oc-
curred (that order is precisely known). For the latter, when
mrule diverges after the SIM-commutative region, we know
there is at least one ordering of all operations in the SIM-
commutative region that M can generate, namely Hcommute.

Thus, feeding M all possible orderings of all the operations
in the SIM-commutative region until M reaches a valid state
must eventually terminate.

Furthermore, if a prefix of the operations in the SIM-
commutative region with the same order as in Hcommute oc-
curs before divergence, then feeding M the operations in this
order will also bring M to a valid state. This is because M
generated Hcommute by being fed operations sequentially in
this order.

The potential for failure arises only when a prefix of a re-
ordering of the SIM-commutative region occurs before di-
vergence, as demonstrated in our example. In this scenario,
we do know not know if this reordered sequence of invoca-
tions and responses can ever be generated by M.

3.5 Why does the proof fail?
The key problem is that our reference implementation M can-
not exhibit some histories required for SIM commutativity.
M is correct, so every history H exhibited by M is in S ,
but there may be some histories in S that M cannot exhibit.
That is, the reference implementation’s exhibited specifica-
tion—the set of histories that it can possibly exhibit—may
lack some traces in S . When this gap arises, and regions
that are SIM-commutative in S do not commute in the ex-
hibited specification, then M may not be able to achieve a
state consistent with the history our construction requires, as
shown in our example.

On the other hand, the proof construction likely works
whenever the given region SIM-commutes in the exhib-
ited specification. Put another way, our construction likely
works as long as “M, the reference implementation, produces
the same results for any reordering of the commutative re-
gion” (quoted from the published version of the proof in
Clements et al. [1]). Any prefix of a reordering of the SIM-
commutative region would still SIM-commute in the exhib-
ited specification because M produces the same result for any
ordering, and thus we can eliminate the failure case of our
proof construction.

3.6 How to fix the proof?
We have seen that a bad reference implementation can pre-
vent our proof technique from producing an implementation
that scales within a given commutative region. We consid-
ered several fixes for this issue.

1. Exhibited specification. As we noted above, the proof
construction will likely work if we restrict the rule to
regions that are SIM-commutative in the exhibited spec-
ification, rather than those that are SIM-commutative in
the defined specification.

2. Specification oracle. Alternately, we could remove the
reference implementation from the proof entirely, and
instead rely on a specification oracle that enumerates
valid responses to invocations.

4

1 moracle(s, i) ≡
2 t← thread(i)
3 hcopy ← []
4 hperf ← []
5 If s.mode ̸= ORACLE:
6 If s.X_copy = []: // enter conflict-free mode
7 s.mode← CONFLICT-FREE
8 hcopy ← s.Y_copy[t]
9 hperf ← s.Y_performed[t]
10 else: // still in replay mode
11 hcopy ← s.X_copy
12 hperf ← s.X_performed
13 If head(hcopy) = i:
14 hcopy.pop()
15 If head(hcopy) is a response & thread(head(hcopy)) = t:
16 r ← head(hcopy)
17 hperf .append((i, r))
18 else: // h.copy empty or input diverged
19 s.mode← ORACLE
20 If s.mode = ORACLE:
21 for each possible response resp to invocation i:
22 H′ ← a history consistent with performed actions
23 If OS (H′ ++ [(i, resp)]) = TRUE:
24 r ← resp
25 s.oracle_performed.append((i, r))
26 break
27 else if s.mode = CONFLICT-FREE:
28 s.Y_copy[t]← tail(s.Y_copy[t])
29 s.Y_performed[t]← hperf

30 else: // replay mode
31 s.X_copy← tail(s.X_copy)
32 s.X_performed ← hperf

33 Return ⟨s, r⟩

Figure 2: Verified constructed scalable implementation
moracle for history H and reference implementation M.

Exhibited specifications would preserve the somewhat
“practical" feel of the flawed proof, and the useful intu-
ition that a scalable implementation can be obtained from
a non-scalable implementation by logging and reconcilia-
tion. However, this is stricter than SIM commutativity, which
places requirements on the specification, not the implemen-
tation. This prevents the SCR from, for example, informing
programmers about potential areas to increase the scalability
of their implementations.

Specification oracles feel less realistic than reference im-
plementations, but they have the advantage of completely
avoiding the issue of whether a given specification can be
implemented at all. They also fit nicely into Coq. Because of
these reasons, our machine-verified proof uses specification
oracles.

4 The Verified Proof
This section describes our machine-verified proof of the SCR
based on a specification oracle. The pseudocode for our
proof construction moracle is shown in Figure 2.

4.1 Oracle proof construction
An oracle OS is a function from a history H to
{TRUE, FALSE} defined as

OS (H) =

{
TRUE H ∈ S

FALSE H ̸∈ S

Given a specification S , an oracle OS , and a specific his-
tory H = X ++ Y where Y SIM-commutes in H, the proof
constructs an implementation moracle that executes conflict-
free within the SIM-commutative region Y .

moracle operates in three modes: replay, conflict-free, and
oracle modes. Its state consists of three parts (with sub-
parts):

1. Copies of H as histories to replay:

• s.X_copy, a global list of actions initialized as X

• s.Y_copy[t], a per-thread list of actions initialized
as Y|t

Note that these copies of H are equivalent to the per-
thread copies s.h[t] of H used in the original proof con-
struction. The split here into X_copy and Y_copy[t] al-
lows us to cleanly separate the global state from the per-
thread state in our Coq formulation. Instead of checking
for a COMMUTE marker to indicate when the Y region
has been reached, our construction will check if X_copy
is empty.

2. Lists of performed actions:

• s.X_performed, a global list of performed actions
of X initialized as []

• s.Y_performed[t], a per-thread list of performed
actions of Y|t initialized as []

• s.oracle_performed, a global list of performed ac-
tions in oracle mode initialized as []

3. s.mode, a global flag indicating the current mode of the
machine

The replay and conflict-free modes act similar to the cor-
responding modes of mrule from the prior proof. If moracle is
not already in oracle mode, then moracle is in replay mode if
s.X_copy is nonempty, or in conflict-free mode if s.X_copy
is empty (line 6). If both s.X_copy and s.Y_copy[t] for all t
are empty, moracle switches to oracle mode (line 19).

In replay mode, if the next requested invocation matches
the next invocation in s.X_copy and the next action in
s.X_copy is a response to that invocation, moracle pops the
head off of s.X_copy, returns the response, and appends the

5

response to s.X_performed (lines 13-17). Otherwise, moracle
has diverged from X ++ Y and switches to oracle mode.

In conflict-free mode (set up in lines 7-9), if the next
requested invocation by t matches the next invocation in
s.Y_copy[t] and the next action in s.Y_copy[t] is a response to
that invocation, moracle returns the response and appends the
response to s.Y_performed[t] (lines 13-17). Otherwise, the
execution has diverged and moracle switches to oracle mode.

In oracle mode, the next response is determined by query-
ing the oracle function. moracle iterates through all possible
responses r to the invocation i and calls OS (H′ ++ [r]),
where H′ is a history consistent with the performed actions
in the history (s.X_performed, s.Y_performed[t] for all t, and
s.oracle_performed). If the oracle returns true, then moracle
stops iterating, returns r, and the chosen response is ap-
pended to s.oracle_performed (lines 20-25).

More specifically, H′ is constructed as
s.X_performed
++s.Y_performed[t0] ++ · · · ++ s.Y_performed[t#threads]
++s.oracle_performed

Because of SIM commutativity, any ordering of operations
in Y satisfies the spec. Thus, sequentially concatenating the
s.Y_performed[∗] to construct H′ generates a valid history.

Note that while in conflict-free mode, moracle executes in a
scalable way: no thread accesses another’s state. Thus, moracle
should satisfy the SCR. In the next section, we describe how
we verified this claim.

4.2 Coq formalization
Here we give an overview of how we formalized the proof
construction and proved its correctness in Coq. The complete
Coq source is available at https://github.com/tslilyai/coq_
scr.

4.2.1 Definitions

Our Coq model includes definitions for action histories (see
Section 2), the machine state and modes as described above,
conflict-freedom, SIM commutativity, and machine execu-
tion. These definitions are presented in the Appendix (Fig-
ure 3). Actions are tuples of ⟨threadID, op, response⟩, and
histories are (reversed) lists of actions. We create an enum
for modes, and use a record to encode state, where the record
contains either thread-specific or global histories. Per-thread
state is represented as a function from tid to history.

Defining conflict-freedom requires defining conflict-free
writes and reads. To define conflict-free writes, we use
two constructions: diff_histories_tid_set takes two histo-
ries and returns the set of threads whose per-thread histo-
ries (s.Y_performed[t] or s.Y_copy[t]) change from the first
history to the second. diff_states_tid_set takes two states
and uses diff_histories_tid_set to return the set of threads
that have had their per-thread state changed between the two
states. Note that per-thread state in our construction changes
only if per-thread history changes.

With these constructions, we can define conflict-free
writes (conflict_free_writes). All writes performed during a

step of the machine from state s1 to s2 on thread t are conflict-
free writes if:

• the global state of s1 and s2 have equivalent values

• either the per-thread state of s1 and s2 have equivalent
values, or the diff_states_tid_set(s1, s2) must contain
at most the single calling thread t

These restrictions guarantee that any writes made during this
step only modify t’s state.

We define conflict-free reads (conflict_free_reads) as fol-
lows: let s1 and s2 be any two states with equivalent values
for the calling thread t’s per-thread state. They must also have
equivalent values for the mode. Then a machine step execut-
ing i on thread t performs only conflict-free reads if:

• a machine step executing i from s1 returns the same
value as a machine step executing i from s2

• both machine executions (from starting states s1 and s2
respectively) end with the mode unchanged

Requiring equivalent return values ensures that no read dur-
ing the machine step depends on another thread’s state or any
global state apart from the mode; s1 and s2 are only restricted
in their values of the per-thread state of t and the mode. Re-
quiring that the modes be unchanging ensures that the only
piece of global state (the mode) read by the machine in ex-
ecuting the step will not be modified during the step, which
would cause our read to conflict with the modifying write.

With both conflict-free writes and conflict-free reads, we
can prove a step is conflict-free by proving that the step’s
writes and reads are both conflict-free.

Note that this definition of conflict-freedom is quite dif-
ferent than the one presented in by Clements et al. in the
original SCR paper, which reasoned about conflicts in terms
of memory access sets. Instead, our Coq definition is special-
ized for the mechanics of our proof construction, and allows
us to reason on the much higher level of our construction’s
abstract per-thread state (e.g., s.Y_copy[t]) rather than indi-
vidual memory accesses.

4.2.2 Theorem statements

The final theorem and important lemmas are shown in the
Appendix (Figure 4). Key helpers to prove these lemmas in-
clude determining the current mode and state of the machine,
definitions for switching between modes when appropriate,
and lemmas proving correctness of the machine when the
machine is at each mode.

Our proof strategy was to first prove two lemmas,
namely machine_correct, which states that the machine
moracle generates only histories satisfying the spec, and ma-
chine_conflict_free, which states that the machine execution
is conflict-free during the SIM-commutative region Y . We
used these lemmas to prove our final statement of the SCR:

1. Correctness: All histories achievable by moracle satisfy
the spec and moracle never returns an invalid response

6

https://github.com/tslilyai/coq_scr
https://github.com/tslilyai/coq_scr

2. Conflict-freedom: Any step moracle takes in the SIM-
commutative region Y is conflict-free

4.3 Proof assumptions and evaluation
Our Coq proof makes several assumptions, encoded as pa-
rameters or as part of the definition:

• The oracle can enumerate all possible responses. For
our proof, we assume something stronger, namely that
the number of responses is finite; finiteness was nec-
essary to convince Coq that the oracle function termi-
nates.

• For every invocation that is valid to call, there exists a
valid response to return.

• The oracle is correct: for all H, OS (H) = TRUE ⇐⇒
H ∈ S .

We made a number of decisions to ease the proof process.
As we described earlier, we reason about conflict-freedom at
a high level (without, for example, modeling memory arrays
or low-level memory accesses as we did in our first attempt).
This abstraction greatly simplified the proof process. We also
switched to local reasoning, i.e., reasoning about steps of the
machine, rather than proving facts about the machine’s en-
tire history, and we found that non-inductive definitions (for
example, for reordered histories) made the proofs easier to
handle. Finally, we proved all lemmas using the reverse of
histories: because histories are defined as a list, the generated
inductive cases were more intuitive (new actions are added
to the head, not the tail, of the list).

The entire Coq development is 2056 LOC, of which 562
lines are state definitions, lemmas, and theorems. The ef-
fort took approximately 3 person-months, including several
weeks stuck on verifying the original (incorrect) proof. We
believe that without attempting to verify the published proof
in Coq, the flaw in the proof may have been difficult to find.

5 Discussion and Conclusion
We have presented an initial proof for the SCR, an exam-
ple and brief discussion about how it is incorrect, and a new,
verified proof for the SCR. However, the new proof is not
wholly satisfactory. Most notably, the verified proof relies
on the existence of a specification oracle, which causes it to
stray even further from an imaginable construction than the
original proof. We also assume enumerable responses, which
may be practically true but fails to capture the intended se-
mantics of any spec that semantically returns responses in,
for example, R. Furthermore, any construction that requires
an oracle to iterate through an enumerable (but potentially
infinite) number of responses is absurd in practice.

Problems in applying the SCR in practice are not restricted
to the proof: the SCR statement itself may be unsuitable for
conveying concrete information to implementers about how
to design scalable systems in practice. For one, the SCR is
a rule that applies only for a particular commutative region,

rather than all commutative regions of a spec. If a spec has
100 commutative regions, then we know each commutative
region has a implementation scalable for that region; how-
ever, we do not know if all 100 implementations are differ-
ent, or if one implementation exists that will scale for all (or
even multiple) commutative regions.

Furthermore, as illustrated by our oracle-based proof con-
struction, scalability may not always be optimal: an imple-
mentation may scale but not necessarily be more performant.

In its current form, the SCR serves best as a hint that cer-
tain implementations can be made more scalable and a sug-
gestion for areas for potential implementation optimization.
For example, this use of the SCR served Clements et al. well
in constructing sv6 [1]. It remains an open question about
whether there is a way to extend the SCR, or modify the
proof construction to aid implementers in designing practi-
cal, scalable systems. Perhaps there is a way to formulate the
SCR to apply not only to one particular commutative region,
but rather a class of commutative regions. Or perhaps a proof
construction exists for a more restricted class of commuta-
tive systems that lends itself toward efficient and practical
systems.

Many other questions remain, such as whether there are
specs for which all practical implementations of the spec will
not commute for the SIM-commutative regions of the spec.
In other words, are there specs for which the only fully scal-
able implementation must have the equivalent of an oracle?
We see the space between the commutativity of implementa-
tions of a spec, and the commutativity of the spec itself as a
fruitful area to explore in future work.

6 Acknowledgments
This research was supported by NSF award CNS-1302359.

References
[1] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.

Morris, and E. Kohler. The scalable commutativity
rule: Designing scalable software for multicore proces-
sors. ACM Transactions on Computer Systems (TOCS),
32(4):10, 2015.

[2] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transac-
tions on Programming Languages Systems, 12(3):463–
492, 1990.

7

Definition action : Type := tid * invocation * response.
Definition history : Type := list action.
Inductive mode : Type :=
| ConflictFree : mode
| Oracle : mode
| Replay : mode.

Record state := mkState {
X_copy : history;
Y_copy : tid -> history;
X_performed : history;
Y_performed : tid -> history;
oracle_performed : history;
md : mode

}.

Parameter sim_commutes :
forall hd tl tl’ Z,
reordered (hd ++ tl) Y ->
reordered tl’ tl ->
spec (Z++tl++X) ->
spec (Z++tl’++X).

Section Conflict.
Definition diff_histories_tid_set {A : Type} (ts1 ts2 : tid -> A) : Ensemble tid :=

fun tid => ts1 tid <> ts2 tid.
Definition diff_states_tid_set (s1 s2 : state) : Ensemble tid :=

Union tid
(diff_histories_tid_set s1.(Y_performed) s2.(Y_performed))
(diff_histories_tid_set s1.(Y_copy) s2.(Y_copy)).

Definition conflict_free_writes (t :tid) (s1 s2 : state) :=
diff_states_tid_set s1 s2 = Singleton tid t /\
s1.(md) = s2.(md) /\
s1.(X_copy) = s2.(X_copy) /\
s1.(X_performed) = s2.(X_performed) /\
s1.(oracle_performed) = s2.(oracle_performed).

Definition conflict_free_reads t i s :=
forall (s1 s2 s1’ s2’: state) (a1 a2: action),

s1.(Y_copy) t = s.(Y_copy) t ->
s2.(Y_copy) t = s.(Y_copy) t ->
s1.(Y_performed) t = s.(Y_performed) t ->
s2.(Y_performed) t = s.(Y_performed) t ->
s1.(md) = s.(md) ->
s2.(md) = s.(md) ->
machine_act s1 t i = (s1’, a1) ->
machine_act s2 t i = (s2’, a2) ->
a1 = a2 /\ s1’.(md) = s.(md) /\ s2’.(md) = s.(md).

End Conflict.

Definition machine_act (s : state) (t: tid) (i : invocation) : (state * action) :=
let mode := next_mode s t i in
match mode with
| Oracle => get_oracle_response (state_with_md s Oracle) t i
| ConflictFree => get_conflictfree_response (state_with_md s ConflictFree) t i
| Replay => match rev (s.(X_copy)) with

| [hd] => get_replay_response (state_with_md s ConflictFree) t i

| _ => get_replay_response (state_with_md s Replay) t i
end

end.

Figure 3: Definitions for proving the SCR

8

Lemma machine_correct :
forall s h,
generated s h ->
spec h.

Lemma machine_conflict_free :
forall s s’ h t i r,
generated s (h ++ X) ->
spec ((t,i,NoResp) :: h ++ X) ->
(exists h’, reordered (h’ ++ (t,i,r) :: h) Y) ->
machine_act s t i = (s’, (t,i,r)) ->
conflict_free_step t s s’.

Theorem scalable_commutativity_rule :
(* All achievable histories satisfy the spec and *)
(* the machine never returns an invalid response *)
(forall s h t i r,

current_state_history s h ->
spec h /\
(List.In (t,i,r) h -> exists rtyp, r = Resp rtyp))

(* If the machine’s next step is in the middle of a (reordering of) *)
(* a SIM-commutative region Y, then the machine’s execution of the *)
(* step is conflict free. *)
/\ (forall s s’ h t i r,

current_state_history s (h ++ X) ->
spec ((t,i,NoResp) :: h ++ X) ->
(exists h’, reordered (h’ ++ (t,i,r) :: h) Y) ->
machine_act s t i = (s’, (t,i,r)) ->

conflict_free_writes t s s’
/\ conflict_free_reads t i s).

Figure 4: Theorems proven about the SCR in Coq

9

	Introduction
	The Scalable Commutativity Rule
	Specifications
	Commutativity
	Rule
	Proof

	The flaw
	Specification
	Reference implementation
	Incorrect construction
	When might the proof fail?
	Why does the proof fail?
	How to fix the proof?

	The Verified Proof
	Oracle proof construction
	Coq formalization
	Definitions
	Theorem statements

	Proof assumptions and evaluation

	Discussion and Conclusion
	Acknowledgments

